Deep Learning Reconstruction Improves the Image Quality of CT Angiography Derived From 80-kVp Cerebral CT Perfusion Data

医学 图像质量 迭代重建 核医学 颈内动脉 放射科 大脑中动脉 血管造影 狭窄 断层摄影术 对比噪声比 图像噪声 灌注扫描 灌注 人工智能 缺血 图像(数学) 内科学 计算机科学
作者
Yù Chen,Yanling Wang,Tong Su,Min Xu,Jing Yan,Jian Wang,Haozhe Liu,Xiaoping Lü,Yun Wang,Zhengyu Jin
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (11): 2666-2673 被引量:3
标识
DOI:10.1016/j.acra.2023.02.007
摘要

To investigate the impact of the deep learning reconstruction (DLR) technique on the image quality of CT angiography (CTA) derived from 80-kVp cerebral CT perfusion (CTP) data and compare it with hybrid-iterative reconstruction (HIR).Thirty-three patients underwent CTP at 80 kVp were prospectively enrolled. CTP data were reconstructed with HIR and DLR. Four image datasets were reconstructed: HIRpeak and DLRpeak were single arterial phase images derived from the time point showing the peak value, HIRtMIP and HIRtAve were time-resolved maximum intensity projection image and time-resolved average image derived from three time points with the greatest enhancement of HIR. The mean CT values, standard deviation, signal-to-noise ratio, and contrast-to-noise ratio of the internal carotid artery and basilar artery were compared among the four image dataset. Image quality was performed using a five-point rating scale. Arterial stenosis was evaluated.DLRpeak had the highest CT value and contrast-to-noise ratio in the internal carotid artery and basilar artery (all p < 0.001). DLRpeak showed the best subjective image quality and had the highest score (4.93 ± 0.4) compared to the other three HIR CTA images (all p < 0.001). The degree of vascular stenosis was consistent among the four evaluated sequences (HIRtAve, HIRpeak, and HIRtMIP DLRpeak).For CTA derived from 80-kVp cerebral CTP data, images reconstructed with deep learning showed better image quality and improved intracranial artery visualization than those processed with HIR and other currently used techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Zxxz发布了新的文献求助10
2秒前
2秒前
2秒前
Jenkin完成签到,获得积分10
2秒前
onlyan发布了新的文献求助10
3秒前
TUtu发布了新的文献求助10
3秒前
有星星的小路完成签到,获得积分10
3秒前
mimihu完成签到,获得积分10
4秒前
高兴的海豚完成签到,获得积分10
6秒前
刘钊扬完成签到,获得积分10
7秒前
梦清完成签到,获得积分10
7秒前
默默安双发布了新的文献求助10
8秒前
飘文献发布了新的文献求助10
8秒前
9秒前
隐形曼青应助MAVS采纳,获得30
10秒前
悠悠我心给悠悠我心的求助进行了留言
13秒前
三更笔舞完成签到 ,获得积分10
18秒前
21秒前
22秒前
科研鸟发布了新的文献求助10
23秒前
zuo完成签到,获得积分10
24秒前
26秒前
酸奶冻完成签到,获得积分10
26秒前
板蓝根完成签到,获得积分10
27秒前
YY发布了新的文献求助10
27秒前
Yubler发布了新的文献求助10
27秒前
27秒前
27秒前
不懈奋进应助聚光灯下采纳,获得20
30秒前
lii完成签到,获得积分10
30秒前
忆枫发布了新的文献求助10
31秒前
86发布了新的文献求助10
31秒前
小沈发布了新的文献求助10
31秒前
32秒前
TUtu完成签到,获得积分10
33秒前
33秒前
Upupupiu发布了新的文献求助10
33秒前
zuo发布了新的文献求助10
34秒前
板蓝根发布了新的文献求助30
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421