已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Reconstruction Improves the Image Quality of CT Angiography Derived From 80-kVp Cerebral CT Perfusion Data

医学 图像质量 迭代重建 核医学 颈内动脉 放射科 大脑中动脉 血管造影 狭窄 断层摄影术 对比噪声比 图像噪声 灌注扫描 灌注 人工智能 缺血 图像(数学) 内科学 计算机科学
作者
Yù Chen,Yanling Wang,Tong Su,Min Xu,Jing Yan,Jian Wang,Haozhe Liu,Xiaoping Lü,Yun Wang,Zhengyu Jin
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (11): 2666-2673 被引量:4
标识
DOI:10.1016/j.acra.2023.02.007
摘要

To investigate the impact of the deep learning reconstruction (DLR) technique on the image quality of CT angiography (CTA) derived from 80-kVp cerebral CT perfusion (CTP) data and compare it with hybrid-iterative reconstruction (HIR).Thirty-three patients underwent CTP at 80 kVp were prospectively enrolled. CTP data were reconstructed with HIR and DLR. Four image datasets were reconstructed: HIRpeak and DLRpeak were single arterial phase images derived from the time point showing the peak value, HIRtMIP and HIRtAve were time-resolved maximum intensity projection image and time-resolved average image derived from three time points with the greatest enhancement of HIR. The mean CT values, standard deviation, signal-to-noise ratio, and contrast-to-noise ratio of the internal carotid artery and basilar artery were compared among the four image dataset. Image quality was performed using a five-point rating scale. Arterial stenosis was evaluated.DLRpeak had the highest CT value and contrast-to-noise ratio in the internal carotid artery and basilar artery (all p < 0.001). DLRpeak showed the best subjective image quality and had the highest score (4.93 ± 0.4) compared to the other three HIR CTA images (all p < 0.001). The degree of vascular stenosis was consistent among the four evaluated sequences (HIRtAve, HIRpeak, and HIRtMIP DLRpeak).For CTA derived from 80-kVp cerebral CTP data, images reconstructed with deep learning showed better image quality and improved intracranial artery visualization than those processed with HIR and other currently used techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小屁孩发布了新的文献求助10
3秒前
Lucas应助清逸采纳,获得10
3秒前
3秒前
张泽林发布了新的文献求助10
5秒前
科目三应助zl采纳,获得10
6秒前
Luis发布了新的文献求助50
7秒前
aldehyde应助李小诺采纳,获得10
7秒前
yyc完成签到,获得积分10
8秒前
冰棒比冰冰完成签到 ,获得积分10
9秒前
shinn发布了新的文献求助10
10秒前
10秒前
YM完成签到,获得积分10
11秒前
11秒前
生动路人发布了新的文献求助20
11秒前
Meimei完成签到,获得积分10
12秒前
隐形曼青应助科研丁真采纳,获得10
13秒前
13秒前
万能图书馆应助秋秋采纳,获得10
13秒前
Yong完成签到,获得积分10
14秒前
14秒前
15秒前
Meimei发布了新的文献求助10
16秒前
参商完成签到,获得积分10
16秒前
17秒前
17秒前
123发布了新的文献求助10
17秒前
红猴果完成签到 ,获得积分10
18秒前
xiaoyan发布了新的文献求助10
18秒前
大模型应助慌慌采纳,获得10
18秒前
19秒前
20秒前
20秒前
李小诺完成签到,获得积分10
21秒前
zl发布了新的文献求助10
22秒前
刘备的小跟班完成签到 ,获得积分10
23秒前
23秒前
23秒前
zzj发布了新的文献求助10
23秒前
星辰大海应助gwind采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401052
求助须知:如何正确求助?哪些是违规求助? 4520107
关于积分的说明 14078072
捐赠科研通 4432959
什么是DOI,文献DOI怎么找? 2433946
邀请新用户注册赠送积分活动 1426122
关于科研通互助平台的介绍 1404738