Deep Learning Reconstruction Improves the Image Quality of CT Angiography Derived From 80-kVp Cerebral CT Perfusion Data

医学 图像质量 迭代重建 核医学 颈内动脉 放射科 大脑中动脉 血管造影 狭窄 断层摄影术 对比噪声比 图像噪声 灌注扫描 灌注 人工智能 缺血 图像(数学) 内科学 计算机科学
作者
Yù Chen,Yanling Wang,Tong Su,Min Xu,Jing Yan,Jian Wang,Haozhe Liu,Xiaoping Lü,Yun Wang,Zhengyu Jin
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (11): 2666-2673 被引量:4
标识
DOI:10.1016/j.acra.2023.02.007
摘要

To investigate the impact of the deep learning reconstruction (DLR) technique on the image quality of CT angiography (CTA) derived from 80-kVp cerebral CT perfusion (CTP) data and compare it with hybrid-iterative reconstruction (HIR).Thirty-three patients underwent CTP at 80 kVp were prospectively enrolled. CTP data were reconstructed with HIR and DLR. Four image datasets were reconstructed: HIRpeak and DLRpeak were single arterial phase images derived from the time point showing the peak value, HIRtMIP and HIRtAve were time-resolved maximum intensity projection image and time-resolved average image derived from three time points with the greatest enhancement of HIR. The mean CT values, standard deviation, signal-to-noise ratio, and contrast-to-noise ratio of the internal carotid artery and basilar artery were compared among the four image dataset. Image quality was performed using a five-point rating scale. Arterial stenosis was evaluated.DLRpeak had the highest CT value and contrast-to-noise ratio in the internal carotid artery and basilar artery (all p < 0.001). DLRpeak showed the best subjective image quality and had the highest score (4.93 ± 0.4) compared to the other three HIR CTA images (all p < 0.001). The degree of vascular stenosis was consistent among the four evaluated sequences (HIRtAve, HIRpeak, and HIRtMIP DLRpeak).For CTA derived from 80-kVp cerebral CTP data, images reconstructed with deep learning showed better image quality and improved intracranial artery visualization than those processed with HIR and other currently used techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wx完成签到 ,获得积分10
2秒前
Hui发布了新的文献求助10
2秒前
香蕉觅云应助菠萝李采纳,获得10
4秒前
Longy发布了新的文献求助10
5秒前
木光发布了新的文献求助10
6秒前
无花果应助11采纳,获得10
6秒前
zorro3574完成签到,获得积分10
6秒前
科研通AI6应助收手吧大哥采纳,获得10
6秒前
jiaying完成签到 ,获得积分10
8秒前
8秒前
新世界的卡密完成签到,获得积分10
9秒前
老唐发布了新的文献求助10
9秒前
柚子完成签到,获得积分10
9秒前
LX完成签到,获得积分10
10秒前
一只小学弱完成签到,获得积分10
13秒前
充电宝应助曾经的安珊采纳,获得10
14秒前
keyan123发布了新的文献求助10
14秒前
军军问问张完成签到,获得积分10
15秒前
爆米花应助刘康艺采纳,获得10
17秒前
无花果应助行者无疆采纳,获得10
18秒前
甜蜜的白风完成签到,获得积分10
18秒前
zsy完成签到 ,获得积分10
18秒前
冷静夜蕾完成签到,获得积分10
19秒前
20秒前
algain完成签到 ,获得积分10
22秒前
23秒前
华仔应助暴富采纳,获得10
25秒前
Holly完成签到,获得积分10
25秒前
小傅完成签到,获得积分20
27秒前
28秒前
29秒前
英吉利25发布了新的文献求助10
29秒前
无聊的不愁完成签到 ,获得积分10
29秒前
完美冷安完成签到,获得积分10
30秒前
小涛哥完成签到 ,获得积分10
31秒前
31秒前
科研通AI6应助阳光诗珊采纳,获得10
32秒前
赵小赵发布了新的文献求助10
34秒前
Robot发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870