Deep learning tools to accelerate antibiotic discovery

深度学习 人工智能 计算机科学 机器学习 药物发现 判别式 生成语法 生成模型 卷积神经网络 人工神经网络 数据科学 生物信息学 生物
作者
Angela Cesaro,Mojtaba Bagheri,Marcelo D. T. Torres,Fangping Wan,César de la Fuente‐Núñez
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:18 (11): 1245-1257 被引量:11
标识
DOI:10.1080/17460441.2023.2250721
摘要

ABSTRACTIntroduction As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity.Areas covered This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations. The deep learning approaches here described include discriminative models such as convolutional neural networks, recurrent neural networks, graph neural networks, and generative models like neural language models, variational autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the integration of these approaches in drug discovery continues to evolve, this review aims to provide insights into promising prospects and challenges that lie ahead in harnessing such technologies for the development of antibiotics.Expert opinion Accurate antimicrobial prediction using deep learning faces challenges such as imbalanced data, limited datasets, experimental validation, target strains, and structure. The integration of deep generative models with bioinformatics, molecular dynamics, and data augmentation holds the potential to overcome these challenges, enhance model performance, and utlimately accelerate antimicrobial discovery.KEYWORDS: Drug discoverydrug designantimicrobialsDeep-learning modelsinfectious diseases Article highlights AI and ML provide innovative ways to expedite antibiotic discovery by optimizing molecular design.The successful use of discriminative and generative deep learning models is directly impacted by the algorithm and influences the model´s ability to represent diverse molecular structures.Discriminative deep learning models are computational frameworks for predicting antibiotic activity, leveraging their specific architectures and approaches.Generative deep learning models are applied in antibiotic design utilizing the composition of molecules to generate potent drug candidates.Deep learning models yet face challenges due to data quality and availability limitations.AcknowledgmentsThe authors thank Dr. Karen Pepper for editing the manuscript and de la Fuente Lab members for insightful discussions. All figures were prepared in BioRender.com. Molecules shown in the review paper were rendered using the PyMOL Molecular Graphics System, Version 2.5.2 Schrödinger, LLC.Declaration of interestC de la Fuente-Nunez provides consulting services to Invaio Sciences and is a member of the Scientific Advisory Boards of Nowture S.L. and Phare Bio. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Reviewer disclosuresPeer reviewers on this manuscript have no relevant financial or other relationships to disclose.Additional informationFundingCesar de la Fuente-Nunez holds a Presidential Professorship at the University of Pennsylvania, is a recipient of the Langer Prize by the AIChE Foundation, and acknowledges funding from the IADR Innovation in Oral Care Award, the Procter & Gamble Company, United Therapeutics, a BBRF Young Investigator Grant, the Nemirovsky Prize, Penn Health-Tech Accelerator Award, the Dean's Innovation Fund from the Perelman School of Medicine at the University of Pennsylvania, the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM138201, and the Defense Threat Reduction Agency (DTRA; HDTRA11810041, HDTRA1-21-1-0014, and HDTRA1-23-1-0001).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小young完成签到 ,获得积分10
刚刚
慕青应助加加油采纳,获得10
刚刚
misalia完成签到,获得积分10
1秒前
tiger完成签到,获得积分10
2秒前
5秒前
5秒前
宋十一发布了新的文献求助10
6秒前
hiadg完成签到 ,获得积分10
6秒前
小青新完成签到 ,获得积分10
9秒前
白英发布了新的文献求助10
11秒前
56jhjl完成签到,获得积分10
13秒前
美满的砖头完成签到 ,获得积分10
17秒前
MAKEYF完成签到 ,获得积分10
17秒前
18秒前
18秒前
simu233完成签到,获得积分10
18秒前
19秒前
llchen完成签到,获得积分0
19秒前
0128lun应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
20秒前
荒野小蚂蚁完成签到,获得积分10
21秒前
SwapExisting发布了新的文献求助10
21秒前
SwapExisting发布了新的文献求助10
21秒前
SwapExisting发布了新的文献求助10
21秒前
SwapExisting发布了新的文献求助10
21秒前
SwapExisting发布了新的文献求助10
21秒前
SwapExisting发布了新的文献求助10
23秒前
SwapExisting发布了新的文献求助10
23秒前
SwapExisting发布了新的文献求助10
23秒前
Aki_27完成签到,获得积分10
25秒前
麻薯头头发布了新的文献求助10
26秒前
27秒前
lllllty完成签到 ,获得积分10
30秒前
小二郎应助gujianhua采纳,获得10
32秒前
大小罐子发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023