The performance of deep learning on thyroid nodule imaging predicts thyroid cancer: A systematic review and meta-analysis of epidemiological studies with independent external test sets

医学 科克伦图书馆 置信区间 结核(地质) 甲状腺 荟萃分析 甲状腺结节 接收机工作特性 内科学 子群分析 流行病学 甲状腺癌 放射科 生物 古生物学
作者
Jin Xu,He-Li Xu,Yining Cao,Ying Huang,Song Gao,Qi‐Jun Wu,Ting‐Ting Gong
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier]
卷期号:17 (11): 102891-102891 被引量:4
标识
DOI:10.1016/j.dsx.2023.102891
摘要

It is still controversial whether deep learning (DL) systems add accuracy to thyroid nodule imaging classification based on the recent available evidence. We conducted this study to analyze the current evidence of DL in thyroid nodule imaging diagnosis in both internal and external test sets.Until the end of December 2022, PubMed, IEEE, Embase, Web of Science, and the Cochrane Library were searched. We included primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. This systematic review was registered on PROSPERO (CRD42022362892).We evaluated evidence from 17 primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. Fourteen studies were deemed eligible for meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) of these DL algorithms were 0.89 (95% confidence interval 0.87-0.90), 0.84 (0.82-0.86), and 0.93 (0.91-0.95), respectively. For the internal validation set, the pooled sensitivity, specificity, and AUC were 0.91 (0.89-0.93), 0.88 (0.85-0.91), and 0.96 (0.93-0.97), respectively. In the external validation set, the pooled sensitivity, specificity, and AUC were 0.87 (0.85-0.89), 0.81 (0.77-0.83), and 0.91 (0.88-0.93), respectively. Notably, in subgroup analyses, DL algorithms still demonstrated exceptional diagnostic validity.Current evidence suggests DL-based imaging shows diagnostic performances comparable to clinicians for differentiating thyroid nodules in both the internal and external test sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的老师完成签到,获得积分10
2秒前
深情安青应助YoungLee采纳,获得10
2秒前
丰富硬币完成签到 ,获得积分10
4秒前
Tracy完成签到 ,获得积分10
5秒前
6秒前
7秒前
11秒前
11秒前
12秒前
田様应助光电很亮采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
fml完成签到,获得积分10
17秒前
17秒前
黄靓靓应助Tree_QD采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
从容的聋五完成签到,获得积分10
18秒前
18秒前
orixero应助牛市棋手采纳,获得10
18秒前
An完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998