The performance of deep learning on thyroid nodule imaging predicts thyroid cancer: A systematic review and meta-analysis of epidemiological studies with independent external test sets

医学 科克伦图书馆 置信区间 结核(地质) 甲状腺 荟萃分析 甲状腺结节 接收机工作特性 内科学 子群分析 流行病学 甲状腺癌 放射科 生物 古生物学
作者
Jin Xu,He-Li Xu,Yining Cao,Ying Huang,Song Gao,Qi‐Jun Wu,Ting‐Ting Gong
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier]
卷期号:17 (11): 102891-102891 被引量:4
标识
DOI:10.1016/j.dsx.2023.102891
摘要

It is still controversial whether deep learning (DL) systems add accuracy to thyroid nodule imaging classification based on the recent available evidence. We conducted this study to analyze the current evidence of DL in thyroid nodule imaging diagnosis in both internal and external test sets.Until the end of December 2022, PubMed, IEEE, Embase, Web of Science, and the Cochrane Library were searched. We included primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. This systematic review was registered on PROSPERO (CRD42022362892).We evaluated evidence from 17 primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. Fourteen studies were deemed eligible for meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) of these DL algorithms were 0.89 (95% confidence interval 0.87-0.90), 0.84 (0.82-0.86), and 0.93 (0.91-0.95), respectively. For the internal validation set, the pooled sensitivity, specificity, and AUC were 0.91 (0.89-0.93), 0.88 (0.85-0.91), and 0.96 (0.93-0.97), respectively. In the external validation set, the pooled sensitivity, specificity, and AUC were 0.87 (0.85-0.89), 0.81 (0.77-0.83), and 0.91 (0.88-0.93), respectively. Notably, in subgroup analyses, DL algorithms still demonstrated exceptional diagnostic validity.Current evidence suggests DL-based imaging shows diagnostic performances comparable to clinicians for differentiating thyroid nodules in both the internal and external test sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淀粉肠发布了新的文献求助10
1秒前
徐自豪完成签到 ,获得积分10
1秒前
邮寄短诗发布了新的文献求助10
1秒前
Owen应助帅气的祥采纳,获得10
1秒前
1秒前
呆萌惜梦完成签到 ,获得积分10
2秒前
emma发布了新的文献求助10
2秒前
2秒前
2秒前
李禾和完成签到,获得积分10
2秒前
快乐的猪发布了新的文献求助10
2秒前
普鲁卡因发布了新的文献求助10
2秒前
多情高丽完成签到 ,获得积分10
3秒前
3秒前
pray发布了新的文献求助10
3秒前
Cat完成签到,获得积分0
3秒前
风中的丝袜完成签到,获得积分10
3秒前
Leffzeng发布了新的文献求助10
3秒前
在水一方应助xiyueQAQ采纳,获得10
3秒前
Rr发布了新的文献求助10
3秒前
jinx123456完成签到,获得积分10
3秒前
zy发布了新的文献求助10
4秒前
Dawn完成签到 ,获得积分10
4秒前
Lillianzhu1完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
biye完成签到 ,获得积分10
5秒前
6秒前
斯文文龙完成签到,获得积分10
6秒前
tRNA完成签到,获得积分10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
ljforever完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017