The performance of deep learning on thyroid nodule imaging predicts thyroid cancer: A systematic review and meta-analysis of epidemiological studies with independent external test sets

医学 科克伦图书馆 置信区间 结核(地质) 甲状腺 荟萃分析 甲状腺结节 接收机工作特性 内科学 子群分析 流行病学 甲状腺癌 放射科 古生物学 生物
作者
Jin Xu,He-Li Xu,Yining Cao,Ying Huang,Song Gao,Qi‐Jun Wu,Ting‐Ting Gong
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier BV]
卷期号:17 (11): 102891-102891 被引量:4
标识
DOI:10.1016/j.dsx.2023.102891
摘要

It is still controversial whether deep learning (DL) systems add accuracy to thyroid nodule imaging classification based on the recent available evidence. We conducted this study to analyze the current evidence of DL in thyroid nodule imaging diagnosis in both internal and external test sets.Until the end of December 2022, PubMed, IEEE, Embase, Web of Science, and the Cochrane Library were searched. We included primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. This systematic review was registered on PROSPERO (CRD42022362892).We evaluated evidence from 17 primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. Fourteen studies were deemed eligible for meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) of these DL algorithms were 0.89 (95% confidence interval 0.87-0.90), 0.84 (0.82-0.86), and 0.93 (0.91-0.95), respectively. For the internal validation set, the pooled sensitivity, specificity, and AUC were 0.91 (0.89-0.93), 0.88 (0.85-0.91), and 0.96 (0.93-0.97), respectively. In the external validation set, the pooled sensitivity, specificity, and AUC were 0.87 (0.85-0.89), 0.81 (0.77-0.83), and 0.91 (0.88-0.93), respectively. Notably, in subgroup analyses, DL algorithms still demonstrated exceptional diagnostic validity.Current evidence suggests DL-based imaging shows diagnostic performances comparable to clinicians for differentiating thyroid nodules in both the internal and external test sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
refrain完成签到,获得积分10
1秒前
喻语儿发布了新的文献求助10
3秒前
kiddos3e完成签到,获得积分10
3秒前
噗噜噜发布了新的文献求助30
4秒前
4秒前
hlx发布了新的文献求助10
4秒前
lewis17完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
领导范儿应助Kam采纳,获得10
13秒前
郑小发布了新的文献求助30
16秒前
17秒前
和谐的柠檬完成签到,获得积分10
17秒前
123完成签到 ,获得积分10
19秒前
饱满冷卉完成签到,获得积分10
21秒前
22秒前
22秒前
猪猪想要平静的生活完成签到,获得积分10
22秒前
斯文败类应助噗噜噜采纳,获得30
22秒前
CAOHOU举报贝尔求助涉嫌违规
25秒前
zqlxueli完成签到 ,获得积分10
25秒前
orixero应助jrzsy采纳,获得10
27秒前
Hello应助水蜜桃幽灵采纳,获得10
28秒前
XiaoMing完成签到,获得积分10
28秒前
陈展峰发布了新的文献求助10
28秒前
延胡索完成签到,获得积分10
29秒前
SYLH应助sresr采纳,获得10
30秒前
叶子完成签到,获得积分10
33秒前
windmill完成签到,获得积分10
34秒前
35秒前
37秒前
123发布了新的文献求助20
37秒前
大模型应助五山第一院士采纳,获得10
38秒前
zcm1999完成签到,获得积分10
39秒前
之道完成签到,获得积分10
39秒前
yyfsummer完成签到,获得积分10
41秒前
ei123完成签到,获得积分10
41秒前
共享精神应助flymove采纳,获得10
43秒前
酷炫鑫发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844