Gene signature of m6A-related targets to predict prognosis and immunotherapy response in ovarian cancer

列线图 卵巢癌 肿瘤科 比例危险模型 免疫疗法 内科学 医学 生存分析 人口 血液学 生物标志物 癌症 生物 遗传学 环境卫生
作者
Wei Tan,Shiyi Liu,Zhanfeng Deng,Fangfang Dai,Mengqin Yuan,Wei Hu,Bingshu Li,Yanxiang Cheng
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (2): 593-608 被引量:4
标识
DOI:10.1007/s00432-022-04162-3
摘要

The aim of the study was to construct a risk score model based on m6A-related targets to predict overall survival and immunotherapy response in ovarian cancer.The gene expression profiles of 24 m6A regulators were extracted. Survival analysis screened 9 prognostic m6A regulators. Next, consensus clustering analysis was applied to identify clusters of ovarian cancer patients. Furthermore, 47 phenotype-related differentially expressed genes, strongly correlated with 9 prognostic m6A regulators, were screened and subjected to univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression. Ultimately, a nomogram was constructed which presented a strong ability to predict overall survival in ovarian cancer.CBLL1, FTO, HNRNPC, METTL3, METTL14, WTAP, ZC3H13, RBM15B and YTHDC2 were associated with worse overall survival (OS) in ovarian cancer. Three m6A clusters were identified, which were highly consistent with the three immune phenotypes. What is more, a risk model based on seven m6A-related targets was constructed with distinct prognosis. In addition, the low-risk group is the best candidate population for immunotherapy.We comprehensively analyzed the m6A modification landscape of ovarian cancer and detected seven m6A-related targets as an independent prognostic biomarker for predicting survival. Furthermore, we divided patients into high- and low-risk groups with distinct prognosis and select the optimum population which may benefit from immunotherapy and constructed a nomogram to precisely predict ovarian cancer patients' survival time and visualize the prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄憨憨发布了新的文献求助10
1秒前
啾啾发布了新的文献求助10
2秒前
mmmmm发布了新的文献求助10
2秒前
4秒前
陈柳发布了新的文献求助10
5秒前
haveatry发布了新的文献求助10
6秒前
星辰大海应助houfengyun328采纳,获得10
7秒前
学术星星关注了科研通微信公众号
7秒前
8秒前
烟花应助Monster采纳,获得10
9秒前
星辰大海应助mmmmm采纳,获得10
10秒前
majf发布了新的文献求助10
10秒前
活泼的向日葵完成签到,获得积分10
11秒前
11秒前
Sugaryeah完成签到,获得积分10
11秒前
故意的小熊猫完成签到 ,获得积分10
11秒前
QQQ发布了新的文献求助10
12秒前
cnd完成签到 ,获得积分10
12秒前
元谷雪应助Sssssss采纳,获得10
13秒前
追寻紫安发布了新的文献求助10
13秒前
小二郎应助petli采纳,获得10
14秒前
15秒前
爆米花应助ZHN采纳,获得10
16秒前
小晚风完成签到,获得积分10
16秒前
盐植物发布了新的文献求助10
16秒前
17秒前
17秒前
Hello应助QQQ采纳,获得10
19秒前
莫华龙完成签到,获得积分10
19秒前
11发布了新的文献求助10
22秒前
22秒前
forest发布了新的文献求助10
22秒前
liyanglin完成签到 ,获得积分10
23秒前
23秒前
江秋寒完成签到,获得积分20
23秒前
万能图书馆应助顺遂采纳,获得10
24秒前
王薯片儿发布了新的文献求助10
25秒前
25秒前
28秒前
月神满月完成签到,获得积分10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138303
求助须知:如何正确求助?哪些是违规求助? 2789341
关于积分的说明 7790881
捐赠科研通 2445588
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065