Gene signature of m6A-related targets to predict prognosis and immunotherapy response in ovarian cancer

列线图 卵巢癌 肿瘤科 比例危险模型 免疫疗法 内科学 医学 生存分析 人口 血液学 生物标志物 癌症 生物 遗传学 环境卫生
作者
Wei Tan,Shiyi Liu,Zhanfeng Deng,Fangfang Dai,Mengqin Yuan,Wei Hu,Bingshu Li,Yanxiang Cheng
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (2): 593-608 被引量:4
标识
DOI:10.1007/s00432-022-04162-3
摘要

The aim of the study was to construct a risk score model based on m6A-related targets to predict overall survival and immunotherapy response in ovarian cancer.The gene expression profiles of 24 m6A regulators were extracted. Survival analysis screened 9 prognostic m6A regulators. Next, consensus clustering analysis was applied to identify clusters of ovarian cancer patients. Furthermore, 47 phenotype-related differentially expressed genes, strongly correlated with 9 prognostic m6A regulators, were screened and subjected to univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression. Ultimately, a nomogram was constructed which presented a strong ability to predict overall survival in ovarian cancer.CBLL1, FTO, HNRNPC, METTL3, METTL14, WTAP, ZC3H13, RBM15B and YTHDC2 were associated with worse overall survival (OS) in ovarian cancer. Three m6A clusters were identified, which were highly consistent with the three immune phenotypes. What is more, a risk model based on seven m6A-related targets was constructed with distinct prognosis. In addition, the low-risk group is the best candidate population for immunotherapy.We comprehensively analyzed the m6A modification landscape of ovarian cancer and detected seven m6A-related targets as an independent prognostic biomarker for predicting survival. Furthermore, we divided patients into high- and low-risk groups with distinct prognosis and select the optimum population which may benefit from immunotherapy and constructed a nomogram to precisely predict ovarian cancer patients' survival time and visualize the prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
lujiajia发布了新的文献求助10
刚刚
1秒前
啊啊啊啊啊叶完成签到 ,获得积分10
1秒前
LLL完成签到 ,获得积分10
1秒前
sanyecao383完成签到,获得积分10
1秒前
Draeck完成签到,获得积分10
2秒前
cruise完成签到,获得积分10
2秒前
在水一方应助念念采纳,获得10
2秒前
2秒前
3秒前
万能图书馆应助动听导师采纳,获得10
3秒前
MADKAI发布了新的文献求助10
3秒前
科研通AI5应助蒋念寒采纳,获得10
4秒前
ric发布了新的文献求助200
4秒前
Li完成签到,获得积分10
4秒前
4秒前
min17完成签到,获得积分10
5秒前
5秒前
小黄发布了新的文献求助10
5秒前
Lucas应助dldddz采纳,获得10
6秒前
6秒前
柠木发布了新的文献求助10
6秒前
郭泓嵩完成签到,获得积分10
7秒前
自由刺猬发布了新的文献求助20
7秒前
weddcf发布了新的文献求助10
7秒前
江月年完成签到 ,获得积分10
7秒前
ZHANG_Kun完成签到 ,获得积分10
7秒前
bin0920完成签到,获得积分10
8秒前
9秒前
9秒前
cruise发布了新的文献求助10
9秒前
向日葵的Rui完成签到,获得积分10
9秒前
小xy发布了新的文献求助10
9秒前
10秒前
香蕉觅云应助青石采纳,获得10
10秒前
科目三应助yangyang采纳,获得10
10秒前
仄兀发布了新的文献求助10
10秒前
小小鱼发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678