复合数
聚合物
材料科学
电介质
复合材料
储能
电容器
光电子学
电压
电气工程
量子力学
物理
工程类
功率(物理)
作者
Hai Sun,Tiandong Zhang,Chao Yin,Hongzhan Sun,Changhai Zhang,Yue Zhang,Yongquan Zhang,Chao Tang,Qingguo Chi
标识
DOI:10.1016/j.cej.2024.154546
摘要
Film capacitors as one of the most important electronic devices are heading in large capacity, heightened integration and excellent extreme-condition tolerance, which faces the challenges in maintaining outstanding performance under harsh conditions of high temperature and large electric field. Nonetheless, polymer capacitive films, which are renowned for their exceptional thermal stability, experience an escalation in conduction losses at elevated temperatures, resulting in degradation of energy storage performance. This study presents the gradient distribution of organic fillers content in all-organic polymer capacitive films utilizing electrospinning technique, the significantly improved high-temperature energy storage performance has been achieved. Glucose (GLC), a weak polar molecule rich in hydroxyl groups, is blended with the most promising polyetherimide (PEI). Experimental and theoretical calculations confirm that the formed hydrogen bond between GLC and PEI acts as a trapping site for capturing carriers and suppressing conduction losses. Furthermore, the spatial distribution of organic fillers was designed on the basis of direct mixing. The results demonstrate that the gradient composite film introduces interlayer interfacial polarization, while the dielectric mismatch between adjacent layers increases the height of potential barriers for the charge carriers across the interfaces, thereby achieving a synergistic enhancement of dielectric response and insulation strength. The maximum discharge energy density of 6.52 J/cm3 with an efficiency of 85.6 % has been achieved at 150℃ for the modified capacitive films. This work establishes a decoupling relationship between permittivity and electric breakdown strength, offering insights for the advancement of polymer films with outstanding energy storage capabilities in extreme environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI