Significantly enhanced high-temperature energy storage performance for polymer composite films with gradient distribution of organic fillers

复合数 聚合物 材料科学 电介质 复合材料 储能 电容器 光电子学 电压 电气工程 量子力学 物理 工程类 功率(物理)
作者
Hai Sun,Tiandong Zhang,Chao Yin,Hongzhan Sun,Changhai Zhang,Yue Zhang,Yongquan Zhang,Chao Tang,Qingguo Chi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:497: 154546-154546
标识
DOI:10.1016/j.cej.2024.154546
摘要

Film capacitors as one of the most important electronic devices are heading in large capacity, heightened integration and excellent extreme-condition tolerance, which faces the challenges in maintaining outstanding performance under harsh conditions of high temperature and large electric field. Nonetheless, polymer capacitive films, which are renowned for their exceptional thermal stability, experience an escalation in conduction losses at elevated temperatures, resulting in degradation of energy storage performance. This study presents the gradient distribution of organic fillers content in all-organic polymer capacitive films utilizing electrospinning technique, the significantly improved high-temperature energy storage performance has been achieved. Glucose (GLC), a weak polar molecule rich in hydroxyl groups, is blended with the most promising polyetherimide (PEI). Experimental and theoretical calculations confirm that the formed hydrogen bond between GLC and PEI acts as a trapping site for capturing carriers and suppressing conduction losses. Furthermore, the spatial distribution of organic fillers was designed on the basis of direct mixing. The results demonstrate that the gradient composite film introduces interlayer interfacial polarization, while the dielectric mismatch between adjacent layers increases the height of potential barriers for the charge carriers across the interfaces, thereby achieving a synergistic enhancement of dielectric response and insulation strength. The maximum discharge energy density of 6.52 J/cm3 with an efficiency of 85.6 % has been achieved at 150℃ for the modified capacitive films. This work establishes a decoupling relationship between permittivity and electric breakdown strength, offering insights for the advancement of polymer films with outstanding energy storage capabilities in extreme environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴走乄完成签到,获得积分10
1秒前
林中鹿完成签到,获得积分10
1秒前
dingbeicn完成签到,获得积分10
3秒前
3秒前
学术趴菜完成签到,获得积分10
4秒前
Lianna发布了新的文献求助10
9秒前
9秒前
健忘的鸭子完成签到,获得积分10
10秒前
少年啊完成签到,获得积分10
12秒前
独特的紫真完成签到,获得积分10
13秒前
13秒前
jojo完成签到 ,获得积分10
14秒前
liuz53完成签到,获得积分10
15秒前
诗亭发布了新的文献求助10
16秒前
16秒前
roger发布了新的文献求助10
17秒前
19秒前
Miya完成签到,获得积分10
20秒前
俞秋烟发布了新的文献求助30
22秒前
小周发布了新的文献求助10
23秒前
怡然的幻灵完成签到,获得积分10
28秒前
激昂的白凡应助tigger采纳,获得40
28秒前
zzz完成签到 ,获得积分10
30秒前
Ade完成签到,获得积分10
32秒前
fat完成签到,获得积分10
32秒前
嘎嘎嘎完成签到 ,获得积分10
32秒前
33秒前
丘比特应助Jennie采纳,获得10
33秒前
hairgod发布了新的文献求助10
34秒前
热心市民小红花应助成璨采纳,获得30
37秒前
37秒前
Schwann翠星石完成签到,获得积分10
38秒前
39秒前
WQQ完成签到,获得积分10
39秒前
嗯哼应助赵小漂亮采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
Akim应助科研通管家采纳,获得10
48秒前
FashionBoy应助科研通管家采纳,获得10
48秒前
852应助科研通管家采纳,获得10
48秒前
ding应助科研通管家采纳,获得10
48秒前
高分求助中
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Historia de la ciencia jurídica europea 600
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069575
求助须知:如何正确求助?哪些是违规求助? 2723483
关于积分的说明 7481948
捐赠科研通 2370550
什么是DOI,文献DOI怎么找? 1257057
科研通“疑难数据库(出版商)”最低求助积分说明 609800
版权声明 596861