血管生成
伤口愈合
透明质酸
氧化应激
糖尿病
治疗性血管生成
医学
药理学
生物医学工程
外科
癌症研究
新生血管
内科学
内分泌学
解剖
作者
Lin Guan,Siyu Wu,Xiaoli Li,Xingchen Li,Ze Wang,Wenlai Guo,Andrei V. Zvyagin,Wenrui Qu,Bai Yang,Quan Lin
标识
DOI:10.1016/j.ijbiomac.2024.135736
摘要
Refractory diabetic wounds are a devastating and rapidly growing clinical problem, which is associated with high incidence rates, mortality, and recurrence rates. Therapeutic angiogenesis in wound tissues is essential to the healing of diabetic wounds. However, the presence of excessive oxidative stress in diabetic wounds hinders angiogenesis, and conventional anti-oxidative approaches are inefficient to compensate for the systematically impaired angiogenesis. Here, a multifunctional supramolecular hyaluronic acid hydrogel dressing for diabetic wounds is successfully designed and constructed (GHPM). The GHPM hydrogel features outstanding properties, including excellent tissue adhesion, antibacterial ability, conductivity, and antioxidant properties. Based on the dynamic crosslinking structure, the GHPM hydrogel also presents adequate injectable and self-healing capabilities, which play a vital role in covering irregular or deep wounds. Additionally, diabetic wounds treated with GHPM hydrogel showed a significant acceleration of wound closure by preventing wound infection, reducing oxidative stress, and accelerating collagen deposition. More interestingly, the combination of electrical stimulation and GHPM hydrogel can effectively promote angiogenesis and neurogenesis, further accelerating diabetic wound healing in an all-around way. This advanced collaborative strategy opens a new avenue in treating diabetic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI