Effect of wettability and surface roughness on flow and heat transfer characteristics in nanochannels

润湿 物理 表面粗糙度 传热 机械 表面光洁度 流量(数学) 曲面(拓扑) 热力学 复合材料 材料科学 几何学 数学
作者
Shanshan Miao,Guodong Xia,Wenbin Zhou,Huiqing Shang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:1
标识
DOI:10.1063/5.0232006
摘要

The flow and heat transfer processes of liquid argon within nanochannels with random roughness are investigated using the molecular dynamics method. This study explores the effects of surface roughness and wettability on flow and heat transfer performance. The results indicate that both surface roughness and wettability significantly influence temperature jumps, velocity slip, flow resistance, and temperature distribution. Specifically, hydrophilic surfaces can reduce temperature jumps and velocity slip due to their enhanced ability to adsorb liquid atoms, which effectively improves heat transfer while simultaneously increasing flow resistance. The fractal dimension D characterizes the surface roughness, which decreases as D increases. Additionally, both the Nusselt number and drag coefficient decrease with increasing D. In this study, we investigate cases where D ranges from 2.5 to 2.9, with D = 2.5 representing the highest roughness, and the smooth channel corresponding to the lowest roughness. For hydrophilic nanochannels at D = 2.5, the Nusselt number and drag coefficient increased by factor of 2.2 times and 5.2 times compared to smooth channels, respectively. For hydrophobic nanochannels at D = 2.5, the Nusselt number and drag coefficient increased by a factor of 4.5 times and 29.1 times compared to smooth surface channels, respectively. Considering both flow and heat transfer performances, the best comprehensive performance is achieved with D = 2.8 for channels with hydrophilic surfaces and D = 2.6 for channels with hydrophobic surfaces. This work systematically investigates the coupled effects of random roughness and wettability on the flow and heat transfer characteristics in nanochannels, providing new theoretical insights for optimizing nanochannel design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ydoyate完成签到,获得积分10
刚刚
刚刚
不散的和弦完成签到,获得积分10
1秒前
ASHSR完成签到 ,获得积分10
1秒前
窝的小卷毛完成签到,获得积分10
2秒前
RR完成签到,获得积分10
2秒前
牛不可完成签到,获得积分10
2秒前
有魅力的从凝完成签到,获得积分10
2秒前
Lovely_pan完成签到,获得积分10
2秒前
幽芊细雨完成签到,获得积分10
2秒前
zxy完成签到,获得积分10
3秒前
3秒前
杨洋完成签到,获得积分10
4秒前
dm11完成签到 ,获得积分10
5秒前
5秒前
无辜的蜗牛完成签到 ,获得积分10
5秒前
6秒前
小坚果发布了新的文献求助10
6秒前
西伯利亚兔完成签到,获得积分10
6秒前
超帅豪完成签到,获得积分10
6秒前
查丽完成签到 ,获得积分10
7秒前
简单捕手关注了科研通微信公众号
7秒前
李顺杰完成签到,获得积分10
7秒前
liu完成签到,获得积分20
7秒前
Tang完成签到 ,获得积分10
7秒前
7秒前
隐形曼青应助酷酷妙梦采纳,获得10
7秒前
CodeCraft应助宫立辉采纳,获得10
7秒前
7秒前
深情安青应助噜啦噜啦嘞采纳,获得10
8秒前
典雅的静发布了新的文献求助10
8秒前
是拿铁吖发布了新的文献求助20
8秒前
虚拟的鞋垫完成签到,获得积分10
8秒前
海藻完成签到,获得积分10
8秒前
orixero应助amino采纳,获得10
8秒前
9秒前
zxh发布了新的文献求助10
9秒前
gro_ele完成签到,获得积分10
9秒前
esther816完成签到,获得积分10
9秒前
hihi发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259