Reviewing Li-Rich Disordered Rocksalts as Next-Generation High-Energy Cathode Material

材料科学 阴极 工程物理 纳米技术 化学 物理 物理化学
作者
Sayandeep Guin,Subham Ghosh,Susim Sabuj Sarkar,Urmimala Maitra
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:36 (21): 10421-10450 被引量:7
标识
DOI:10.1021/acs.chemmater.4c00469
摘要

To keep up with the ever increasing demand for improved energy storage technologies, huge improvements in the capacity and energy density of intercalated cathode materials used in lithium batteries are required. Due to their crystal structure and chemistry, current layered and spinel-type cathodes can reversibly cycle only a maximum of one Li+ per formula unit (pfu). Radical improvements are needed, and this will require the adoption of new chemistries. Li-rich disordered rocksalt oxide (LDRS) cathodes can store more than one Li+ pfu. They have a crystalline rocksalt structure with a disordered cation lattice. LDRS has demonstrated the potential to provide capacities over a wide range of Li compositions without structural changes. Cation disorder results in unique Li transport properties, electrochemical profile, local structure, and very little to no structural change during charge–discharge cycling. A cationically disordered lattice also makes the material compositionally flexible. This reduces the dependence on scarce and expensive raw materials, such as nickel and cobalt. A higher operating voltage, which leads to the higher energy density of LDRS materials, is generally achieved by the introduction of anion redox in addition to cation redox and/or by fluorination. While cation-disordered rock salts (DRS) have been studied for over a decade, high-energy DRS materials are a relatively new class of compounds. This Perspective reviews the DRS synthesis and Li transport properties of DRS materials and, more specifically, the design strategies that have been employed to achieve high-energy-density DRS cathodes. Despite their structural stability against cation migration, DRS cathodes face challenges. These include poor capacity retention. We review the possible mechanisms for capacity and voltage degradation and suggest possible strategies to improve the performance of high-voltage/high-power DRS to make it a viable high-energy-density alternative to the present Li–Ni–Mn-Co oxide (NMC) cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助龍Ryu采纳,获得10
刚刚
wxyshare举报闾丘惜萱求助涉嫌违规
刚刚
天天快乐应助bwh采纳,获得10
1秒前
bkagyin应助谦虚低调接地气采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
感动访天完成签到,获得积分20
3秒前
wandali发布了新的文献求助200
3秒前
4秒前
幻海潮生发布了新的文献求助10
5秒前
陈展峰完成签到,获得积分10
6秒前
感动访天发布了新的文献求助10
6秒前
脑洞疼应助ling采纳,获得10
6秒前
大花2完成签到,获得积分10
7秒前
李爱国应助晴朗采纳,获得10
7秒前
8秒前
Ghiocel完成签到,获得积分10
9秒前
orixero应助酷炫大树采纳,获得10
9秒前
陈秋妮关注了科研通微信公众号
9秒前
10秒前
10秒前
恋风恋歌发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
bwh发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
霜降发布了新的文献求助10
15秒前
15秒前
星辰大海应助swh采纳,获得10
16秒前
野云关注了科研通微信公众号
17秒前
糊涂pipi完成签到,获得积分10
17秒前
写了能发发布了新的文献求助10
17秒前
Soulmate发布了新的文献求助10
18秒前
wangqinlei完成签到 ,获得积分10
18秒前
19秒前
胡莱完成签到,获得积分20
20秒前
PUPU完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091