Beyond the madness: a balanced approach to standardization, practicality and innovation in exercise physiology threshold assessment

标准化 一致性(知识库) 考试(生物学) 多样性(政治) 认知心理学 应用心理学 心理学 计算机科学 人工智能 政治学 生物 操作系统 古生物学 法学
作者
Thomas Gronwald,Lars Christian Schwalm,Billy Sperlich
出处
期刊:The Journal of Physiology [Wiley]
卷期号:602 (22): 6361-6362
标识
DOI:10.1113/jp287691
摘要

With great interest, we read the reply by Chavez-Guevara et al. (2024a) regarding the initial discussion, 'Stop the madness! An urgent call to standardize the assessment of exercise physiology thresholds' (Chavez-Guevara et al., 2024b). We are pleased to find consensus on several of our key points (Sperlich & Gronwald, 2024), particularly the recognition of system-dynamic complexity and the interconnections between physiological subsystems, which are crucial for validating paradigms linking physiological thresholds. Nevertheless, we feel the need to clarify three specific points discussed in their response as they are relevant for both the scientific and practical community: We agree with Chavez-Guevara et al. (2024a) that some standardized approaches, such as those proposed by Merrell et al. (2024), already exist and should be implemented where applicable. While these frameworks for standardizing test conditions and prerequisites are indeed valuable, they fall short in addressing critical domains, such as the determination of exercise physiological thresholds. This limitation extends to the development of global databases for maximal and submaximal physiological metrics. Further standardization in areas such as the use of blood lactate concentrations or oxygen uptake for decision making requires more than the simple adoption of test condition checklists. While the creation of checklists for threshold determination, analysis, and reporting can enhance consistency and assist those who may be overwhelmed by the diversity of assessments, these measures alone are insufficient to capture the inherent complexity and variability of physiological responses during exercise. Chavez-Guevara et al. (2024a) suggest that relying solely on technological advancements (e.g., computational models or wearable technologies) is insufficient to fully comprehend the complexity of physiological thresholds, and we agree with this. However, our position is not an argument for a purely 'technoscientific' approach but rather a blend of technological innovation and system-dynamic physiological insight. We do not reject classical methods like lactate threshold or gas exchange analysis. Instead, we propose that emerging approaches, such as those based on heart rate variability or muscle oxygen saturation, can complement traditional techniques. Assessing objective markers of internal load to analyse the complex dose-response relationships during exercise requires valid, reliable procedures and precise measurement principles that can be further developed through technological innovation. Such advancements have the potential to contribute to a more holistic understanding of organismic responses, serving as proxy measures of exercise 'dose' alongside traditional objective markers of internal load (e.g., oxygen consumption, heart rate, blood lactate concentration), external load (e.g., power, speed), and subjective markers of internal load (e.g., rating of perceived exertion). An additional critical consideration is the day-to-day variability in physiological responses, arising from both technical and biological variations, which poses significant challenges for research as well as practical applications. For example, fluctuations in physiological markers such as oxygen uptake and blood lactate levels can result in misleading conclusions when solely relying on standardized testing methods (Zinner et al., 2023). Complementary technologies, such as wearable devices, enable continuous monitoring (Duking et al., 2022) and could assist in detecting and accounting for these daily fluctuations – provided these devices are valid and reliable. This real-time monitoring offers a valuable means to assess and mitigate the impact of day-to-day variability, thereby improving the accuracy of physiological assessments. Chavez-Guevara et al. (2024a) also raise concerns regarding technological innovations such as AI and computational models. While we acknowledge these concerns, we advocate for the continued development and refinement of these technologies, as long as they are employed with methodological rigour. Wearable technologies, AI models, and other computational approaches hold considerable promise for improving the transferability between laboratory and field settings, as well as for enabling real-time data collection. This is particularly valuable when compared to relying solely on exercise and training prescriptions derived from CPET protocols, which may fail to account for varying field conditions in the days or weeks following testing. However, the successful application of these technologies requires interdisciplinary collaboration to ensure their validity and reliability. In their counterpoint, Chavez-Guevara et al. (2024a) emphasize the importance of accuracy over practicality in exercise physiology threshold assessments, particularly in clinical or athletic settings. While we agree that accuracy is critical, we contend that, in some cases, a high level of precision may not be necessary for effective decision-making. For instance, when classifying individuals as 'fit' versus 'unfit' for basic health assessments or fitness programmes, precise physiological thresholds may be less essential. This may also apply to health and preventative sports, where approximate training zones could suffice, given that most recreational athletes lack access to precise training controls. In such scenarios, general markers or rough estimations can provide adequate guidance for practical decision-making without requiring the highest levels of accuracy. Furthermore, when working with patients in clinical settings, where compliance and safety are paramount, practicality may outweigh the need for absolute precision. High-performance athletes and clinical patients often require different diagnostic approaches, and practical limitations should not be viewed as obstacles but as considerations for test adaptation, ensuring effective decision-making without undue burden (e.g., fatigue or unnecessary test exhaustion). This balance remains critical for both ethical reasons and ensuring adherence to interventions. In sum, while we are aligned on many key points, we maintain that technological innovations, combined with methodologically robust, practical, and adaptable testing protocols, hold the potential to advance a more comprehensive and individualized understanding of exercise physiology thresholds. As researchers and practitioners, we see our role as facilitating both the progression and application of these innovations, ensuring that future standards accurately capture the complexity of the field while remaining practical and adaptable to diverse populations and areas of application. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. No competing interests declared. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed. None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Litoivda完成签到 ,获得积分10
1秒前
暮雨完成签到,获得积分10
2秒前
DOGDAD完成签到,获得积分10
4秒前
英俊的铭应助温柔翰采纳,获得10
4秒前
英姑应助薛建伟采纳,获得10
4秒前
如云完成签到,获得积分20
5秒前
你说的完成签到 ,获得积分10
5秒前
Jasper应助大脸猫4811采纳,获得10
6秒前
hearz完成签到,获得积分10
7秒前
8秒前
P2JY完成签到,获得积分10
8秒前
leiiiiiiii完成签到,获得积分10
8秒前
Bake完成签到 ,获得积分10
10秒前
11秒前
yuan完成签到,获得积分10
11秒前
论文多多完成签到,获得积分10
12秒前
12秒前
Acid完成签到 ,获得积分10
12秒前
1111111111111发布了新的文献求助10
13秒前
linlinyilulvdeng完成签到,获得积分10
13秒前
斯文败类应助历史雨采纳,获得10
14秒前
FashionBoy应助吃个大笼包采纳,获得10
16秒前
海阔天空发布了新的文献求助10
17秒前
薛建伟发布了新的文献求助10
18秒前
高高代珊发布了新的文献求助10
19秒前
害羞的墨镜完成签到,获得积分10
19秒前
lalala发布了新的文献求助10
19秒前
20秒前
guojingjing完成签到,获得积分10
20秒前
打打应助科多兽骑士采纳,获得10
21秒前
angela完成签到,获得积分10
21秒前
21秒前
潇洒的茗茗完成签到 ,获得积分10
23秒前
脂肪小米粥完成签到,获得积分10
24秒前
小幸运完成签到,获得积分10
27秒前
爱吃冻梨完成签到,获得积分10
27秒前
xiang发布了新的文献求助10
27秒前
陈冲冲完成签到,获得积分10
28秒前
changfox完成签到,获得积分10
28秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066