Psychopathology symptoms of frontline nurses under sudden public health crisis: A network analysis

精神病理学 心理学 公共卫生 心理健康 精神科 临床心理学 医学 护理部
作者
Mengyuan Dong,Xuan Zhang,Fenglin Cao
出处
期刊:Stress and Health [Wiley]
标识
DOI:10.1002/smi.3451
摘要

Abstract Public health crises can significantly impact the emotional well‐being of healthcare workers. Network analysis is a novel approach to exploring interactions between mental disorders at the symptom level. This study aimed to elucidate the characteristics of post‐traumatic stress disorder (PTSD), anxiety, depression, and insomnia symptoms network among frontline nurses under sudden public health crisis. A cross‐sectional survey was conducted online among 556 frontline nurses through convenience sampling in Hubei Province, China, from 21 February 2020, to 10 March 2020. Symptoms of PTSD, anxiety, depression, and insomnia were assessed by the Post‐Traumatic Stress Disorder Checklist (PCL‐5), Generalized Anxiety Disorder scale (GAD‐7), Patient Health Questionnaire (PHQ‐9) and Insomnia Severity Index, respectively. Central symptoms (the most important symptoms, activation has the strongest influence the other nodes) and bridge symptoms (nodes where deactivation can prevent activation from spreading from one disorder to another) were identified via centrality and bridge centrality indices, respectively. Network stability was examined using the case‐dropping procedure. We found that the correlation between PHQ‐9 item 9 ‘suicidal thoughts’ and PCL‐5 item 16 ‘reckless or self‐destructive behaviour’ was the strongest. Moreover, ‘reckless or self‐destructive behaviour’ was the strongest central symptom, and PHQ‐9 item 3 ‘sleep problems’ was the most important bridge symptom. Other major symptoms included GAD‐7 item 6 ‘uncontrollable anxiety’ and PHQ‐9 item 2 ‘depressed or sad mood’. Timely, systemic targeting interventions on central symptoms and bridge symptoms may effectively alleviate co‐occurring experiences of psychopathological symptoms among frontline nurses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助季末默相依采纳,获得10
刚刚
lllei完成签到,获得积分10
1秒前
1秒前
桐桐应助Daisy采纳,获得10
2秒前
可爱的函函应助独特亦旋采纳,获得10
3秒前
yangyajie发布了新的文献求助10
3秒前
3秒前
虚幻莹完成签到,获得积分10
3秒前
4秒前
科研通AI5应助哈哈哈采纳,获得10
4秒前
5秒前
6秒前
润润轩轩发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
完美世界应助AD钙钙钙采纳,获得10
8秒前
8秒前
陈糯米发布了新的文献求助20
9秒前
科研通AI2S应助殷昭慧采纳,获得10
9秒前
9秒前
ding应助Red采纳,获得10
9秒前
小麻花发布了新的文献求助10
9秒前
10秒前
10秒前
科研通AI5应助司阳0367采纳,获得10
10秒前
cis2014发布了新的文献求助10
11秒前
11秒前
木子李发布了新的文献求助10
12秒前
akkk626发布了新的文献求助100
12秒前
smile发布了新的文献求助10
13秒前
zhasmile完成签到,获得积分10
13秒前
打打应助寂寞的小夏采纳,获得10
14秒前
香蕉觅云应助一千年以后采纳,获得10
14秒前
脑洞疼应助一千年以后采纳,获得10
14秒前
Ava应助林钰浩采纳,获得10
15秒前
swjs08完成签到,获得积分10
15秒前
FashionBoy应助quan12138采纳,获得10
15秒前
15秒前
kinn发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399