Correlating transcriptional networks to breast cancer survival: a large-scale coexpression analysis

生物 乳腺癌 基因 癌症 微阵列分析技术 生存分析 基础(医学) 基因表达 基因表达谱 癌症研究 计算生物学 遗传学 肿瘤科 内科学 内分泌学 医学 胰岛素
作者
Colin Clarke,Stephen F. Madden,Padraig Doolan,Sinéad Aherne,Helena Joyce,Lorraine O’Driscoll,William M. Gallagher,Bryan T. Hennessy,M. Moriarty,John Crown,Susan Kennedy,Martin Clynes
出处
期刊:Carcinogenesis [Oxford University Press]
卷期号:34 (10): 2300-2308 被引量:851
标识
DOI:10.1093/carcin/bgt208
摘要

Weighted gene coexpression network analysis (WGCNA) is a powerful 'guilt-by-association'-based method to extract coexpressed groups of genes from large heterogeneous messenger RNA expression data sets. We have utilized WGCNA to identify 11 coregulated gene clusters across 2342 breast cancer samples from 13 microarray-based gene expression studies. A number of these transcriptional modules were found to be correlated to clinicopathological variables (e.g. tumor grade), survival endpoints for breast cancer as a whole (disease-free survival, distant disease-free survival and overall survival) and also its molecular subtypes (luminal A, luminal B, HER2+ and basal-like). Examples of findings arising from this work include the identification of a cluster of proliferation-related genes that when upregulated correlated to increased tumor grade and were associated with poor survival in general. The prognostic potential of novel genes, for example, ubiquitin-conjugating enzyme E2S (UBE2S) within this group was confirmed in an independent data set. In addition, gene clusters were also associated with survival for breast cancer molecular subtypes including a cluster of genes that was found to correlate with prognosis exclusively for basal-like breast cancer. The upregulation of several single genes within this coexpression cluster, for example, the potassium channel, subfamily K, member 5 (KCNK5) was associated with poor outcome for the basal-like molecular subtype. We have developed an online database to allow user-friendly access to the coexpression patterns and the survival analysis outputs uncovered in this study (available at http://glados.ucd.ie/Coexpression/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱多发布了新的文献求助10
刚刚
1秒前
hoyden完成签到,获得积分10
1秒前
逍遥子0211完成签到,获得积分10
1秒前
2秒前
arabidopsis完成签到,获得积分0
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
SciGPT应助进步面包笑哈哈采纳,获得20
5秒前
5秒前
水草帽完成签到 ,获得积分10
6秒前
poki发布了新的文献求助10
6秒前
6秒前
iNk应助mayocoh采纳,获得10
7秒前
Sindy发布了新的文献求助30
7秒前
hua发布了新的文献求助10
8秒前
32完成签到,获得积分10
9秒前
9秒前
bravo完成签到,获得积分0
10秒前
阿治发布了新的文献求助10
10秒前
漂亮忆南发布了新的文献求助10
11秒前
思源应助时丶倾采纳,获得10
11秒前
JASON发布了新的文献求助10
12秒前
12秒前
13秒前
xcchh发布了新的文献求助10
15秒前
XX完成签到,获得积分10
15秒前
ddd完成签到,获得积分10
16秒前
Hzw完成签到,获得积分10
16秒前
16秒前
爱吃柚子完成签到,获得积分10
16秒前
boxi完成签到,获得积分10
17秒前
17秒前
BINGBING1230发布了新的文献求助10
17秒前
Zirong发布了新的文献求助30
17秒前
18秒前
Hello应助Canon采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972