祖细胞
间充质干细胞
细胞生物学
生物
肌发生
脂肪生成
干细胞
细胞分化
胚胎干细胞
心肌细胞
免疫学
遗传学
基因
作者
Min Du,Yan Huang,A. K. Das,Qiyuan Yang,Márcio de Souza Duarte,M. V. Dodson,Meijun Zhu
标识
DOI:10.2527/jas.2012-5670
摘要
Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
科研通智能强力驱动
Strongly Powered by AbleSci AI