An Attention-Enhanced End-to-End Discriminative Network With Multiscale Feature Learning for Remote Sensing Image Retrieval

判别式 计算机科学 人工智能 平滑的 图像检索 残余物 特征(语言学) 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 计算机视觉 图像(数学) 人工神经网络 算法 语言学 哲学
作者
Dongyang Hou,Siyuan Wang,Xueqing Tian,Huaqiao Xing
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 8245-8255 被引量:11
标识
DOI:10.1109/jstars.2022.3208107
摘要

The discriminative ability of image features plays a decisive role in content-based remote sensing image retrieval (CBRSIR). However, the widely-used convolutional neural networks cannot focus on the discriminative features of important scenes, resulting in unsatisfactory retrieval performance in complex contexts. In this paper, an attention-enhanced end-to-end discriminative network with multiscale learning for CBRSIR is proposed to solve this issue. First, a multiscale dilated convolution module is embedded into some of ResNet50's residual blocks to increase the perceptual field and capture the multiscale features of remote sensing image scenes. Then, a lightweight and efficient triplet attention module is added behind each residual block to capture the salient features of remote sensing images and establish the inter-dimensional dependencies using residual transform. In addition, the end-to-end training approach is performed using an online label smoothing loss to reduce the intra-class variance of features and enhance inter-class differentiability. Experimental results on four publicly available remote sensing image datasets show that our network achieves state-of-the-art or competitive performance, especially on complex scene dataset UCMD with an average retrieval precision improvement of 3.23% to 29.35% compared to other new methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Auoroa发布了新的文献求助10
1秒前
sfliufighting发布了新的文献求助10
5秒前
与山发布了新的文献求助10
6秒前
思源应助阳光的梦寒采纳,获得50
7秒前
彼岸花开发布了新的文献求助10
7秒前
修狗叫大黄完成签到,获得积分10
9秒前
皮皮发布了新的文献求助10
9秒前
11秒前
15秒前
Auoroa完成签到,获得积分10
19秒前
司空褚完成签到 ,获得积分10
19秒前
CHAUSU完成签到 ,获得积分10
20秒前
21秒前
ffw1完成签到,获得积分10
23秒前
25秒前
26秒前
Zjn-发布了新的文献求助10
26秒前
28秒前
固的曼完成签到,获得积分10
29秒前
狂野的尔风完成签到,获得积分10
29秒前
30秒前
晶镓万岁发布了新的文献求助10
34秒前
JamesPei应助Jere采纳,获得20
36秒前
37秒前
39秒前
wanci应助sfliufighting采纳,获得10
39秒前
40秒前
41秒前
41秒前
42秒前
孙友浩发布了新的文献求助10
44秒前
口外彭于晏完成签到,获得积分10
44秒前
45秒前
ceeray23应助paipai2采纳,获得10
46秒前
Huan发布了新的文献求助40
47秒前
47秒前
与山完成签到,获得积分10
48秒前
所所应助段醒醒采纳,获得10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533