Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling

欠采样 计算机科学 深度学习 迭代重建 压缩传感 自编码 卷积神经网络 人工智能 计算机视觉 模式识别(心理学)
作者
Guan Qiu Hong,Yuan Tao Wei,William A.W. Morley,Matthew Wan,Alexander J. Mertens,Su Yang,Hai‐Ling Margaret Cheng
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:106: 102206-102206 被引量:9
标识
DOI:10.1016/j.compmedimag.2023.102206
摘要

Acceleration in MRI has garnered much attention from the deep-learning community in recent years, particularly for imaging large anatomical volumes such as the abdomen or moving targets such as the heart. A variety of deep learning approaches have been investigated, with most existing works using convolutional neural network (CNN)-based architectures as the reconstruction backbone, paired with fixed, rather than learned, k-space undersampling patterns. In both image domain and k-space, CNN-based architectures may not be optimal for reconstruction due to its limited ability to capture long-range dependencies. Furthermore, fixed undersampling patterns, despite ease of implementation, may not lead to optimal reconstruction. Lastly, few deep learning models to date have leveraged temporal correlation across dynamic MRI data to improve reconstruction. To address these gaps, we present a dual-domain (image and k-space), transformer-based reconstruction network, paired with learning-based undersampling that accepts temporally correlated sequences of MRI images for dynamic reconstruction. We call our model DuDReTLU-net. We train the network end-to-end against fully sampled ground truth dataset. Human cardiac CINE images undersampled at different factors (5−100) were tested. Reconstructed images were assessed both visually and quantitatively via the structural similarity index, mean squared error, and peak signal-to-noise. Experimental results show superior performance of DuDReTLU-net over state-of-the-art methods (LOUPE, k-t SLR, BM3D-MRI) in accelerated MRI reconstruction; ablation studies show that transformer-based reconstruction outperformed CNN-based reconstruction in both image domain and k-space; dual-domain reconstruction architectures outperformed single-domain reconstruction architectures regardless of reconstruction backbone (CNN or transformer); and dynamic sequence input leads to more accurate reconstructions than single frame input. We expect our results to encourage further research in the use of dual-domain architectures, transformer-based architectures, and learning-based undersampling, in the setting of accelerated MRI reconstruction. The code for this project is made freely available at https://github.com/william2343/dual-domain-mri-recon-nets (Hong et al., 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助jackmilton采纳,获得10
2秒前
开心的幼珊完成签到 ,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
晶晶发布了新的文献求助10
11秒前
11秒前
轻松小之发布了新的文献求助10
16秒前
Z趋势完成签到,获得积分10
17秒前
io关闭了io文献求助
17秒前
吕培森发布了新的文献求助10
17秒前
顾初安发布了新的文献求助10
17秒前
21秒前
gui0826发布了新的文献求助10
22秒前
Lucas应助kyj采纳,获得10
25秒前
26秒前
顾初安完成签到,获得积分10
26秒前
samara发布了新的文献求助10
27秒前
吕培森完成签到 ,获得积分10
28秒前
Ya完成签到 ,获得积分10
28秒前
AlexLee给FEOROCHA的求助进行了留言
31秒前
阜睿完成签到 ,获得积分10
34秒前
35秒前
37秒前
晶晶完成签到,获得积分10
37秒前
37秒前
38秒前
kyj发布了新的文献求助10
38秒前
坚定的馒头完成签到,获得积分20
39秒前
tumbler完成签到 ,获得积分10
41秒前
闪电侠发布了新的文献求助10
41秒前
中科院一区选手完成签到,获得积分10
43秒前
44秒前
wanci应助gui0826采纳,获得10
44秒前
44秒前
45秒前
47秒前
aidengu完成签到 ,获得积分0
50秒前
hgl完成签到 ,获得积分10
50秒前
YXL完成签到,获得积分10
51秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370104
求助须知:如何正确求助?哪些是违规求助? 2988758
关于积分的说明 8732516
捐赠科研通 2671675
什么是DOI,文献DOI怎么找? 1463620
科研通“疑难数据库(出版商)”最低求助积分说明 677287
邀请新用户注册赠送积分活动 668461