Spatiotemporally controlled microvortices provide advanced microfluidic components

微流控 纳米技术 计算机科学 生化工程 材料科学 工程类
作者
Makoto Saito,Fumihito Arai,Yoko Yamanishi,Shinya Sakuma
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (33)
标识
DOI:10.1073/pnas.2306182121
摘要

Microvortices are emerging components that impart functionality to microchannels by exploiting inertia effects such as high shear stress, effective fluid diffusion, and large pressure loss. Exploring the dynamic generation of vortices further expands the scope of microfluidic applications, including cell stimulation, fluid mixing, and transport. Despite the crucial role of vortices' development within sub-millisecond timescales, previous studies in microfluidics did not explore the modulation of the Reynolds number (Re) in the range of several hundred. In this study, we modulated high-speed flows (54 < [Formula: see text] < 456) within sub-millisecond timescales using a piezo-driven on-chip membrane pump. By applying this method to microchannels with asymmetric geometries, we successfully controlled the spatiotemporal development of vortices, adjusting their behavior in response to oscillatory flow directions. These different vortices induced different pressure losses, imparting the microchannels with direction-dependent flow resistance, mimicking a diode-like behavior. Through precise control of vortex development, we managed to regulate this direction-dependent resistance, enabling the rectification of oscillatory flow resembling a diode and the ability to switch its rectification direction. This component facilitated bidirectional flow control without the need for mechanical valves. Moreover, we demonstrated its application in microfluidic cell pipetting, enabling the isolation of single cells. Consequently, based on modulating high-speed flow, our approach offers precise control over the spatiotemporal development of vortices in microstructures, thereby introducing innovative microfluidic functionalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
纯真的诗兰完成签到,获得积分10
2秒前
迷路荷花发布了新的文献求助10
2秒前
晶晶妹妹完成签到,获得积分10
2秒前
新明驳回了Lucas应助
3秒前
3秒前
4秒前
情怀应助慕课魔芋采纳,获得10
4秒前
天天都肚子疼完成签到,获得积分10
4秒前
4秒前
Macaco发布了新的文献求助10
4秒前
hyx发布了新的文献求助10
4秒前
派大星完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
honphyjiang发布了新的文献求助10
6秒前
Xiaoqi发布了新的文献求助10
7秒前
9秒前
beiyoumilu发布了新的文献求助10
9秒前
SHYSHYLONG完成签到,获得积分10
9秒前
Akim应助安静的难破采纳,获得10
9秒前
多多发SCI发布了新的文献求助10
10秒前
10秒前
linuo完成签到,获得积分10
10秒前
222完成签到,获得积分20
10秒前
於依白完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
weiyf15完成签到 ,获得积分10
13秒前
14秒前
15秒前
16秒前
无辜素发布了新的文献求助10
16秒前
赵y应助海鸥采纳,获得10
16秒前
17秒前
viahit发布了新的文献求助10
17秒前
汉堡包应助天宁采纳,获得10
17秒前
高分求助中
Handbook of Fuel Cells, 6 Volume Set 1666
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 800
消化器内視鏡関連の偶発症に関する第7回全国調査報告2019〜2021年までの3年間 500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 冶金 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2862036
求助须知:如何正确求助?哪些是违规求助? 2467771
关于积分的说明 6691635
捐赠科研通 2158660
什么是DOI,文献DOI怎么找? 1146706
版权声明 585157
科研通“疑难数据库(出版商)”最低求助积分说明 563428