亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Drone-Driven Delivery Network Design for an On-Demand O2O Platform Considering Hazard Risks and Customer Heterogeneity

无人机 危害 业务 计算机科学 遗传学 生物 有机化学 化学
作者
Xuting Sun,Xinhang Li
出处
期刊:Asia-Pacific Journal of Operational Research [World Scientific]
卷期号:41 (04) 被引量:1
标识
DOI:10.1142/s0217595924400049
摘要

Nowadays, the online-to-offline (O2O) retailers provide on-demand delivery service for online orders by their own fleets and riders. An intelligent delivery network lays an important foundation to support cost-effective delivery service in the long run. Drones have great potential to revolutionize the instant delivery industry regarding cost and timeliness, while the hazard risks to humans and the environment should be seriously considered through sophisticated network design. In this paper, we propose a framework for a drone-driven intelligent delivery network design problem with the consideration of the multi-dimensional risk map, which needs to determine store location, drone fleet size and allocation, customer assignment, customer delivery mode selection, and delivery routing. A bi-objective non-linear programming model is formulated to maximize profit and minimize integrated risks as well. To tackle large instances, a modified NSGA-III algorithm is developed, which is incorporated with problem-specific search operators and Pareto local search to obtain Pareto solutions efficiently. Real-world data-based numerical experiments are conducted to verify the performance of the modified NSGA-III algorithm compared to the modified NSGA-II. A case study based on the geographical information in Shanghai is analyzed to validate the effectiveness of the proposed model. Moreover, sensitivity analysis is presented to evaluate the effects of multiple parameters on the drone delivery service network design. Some managerial insights are obtained for the O2O retailer who offers on-demand delivery service through online platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平平无奇打工人完成签到 ,获得积分10
6秒前
丘比特应助小飞采纳,获得10
7秒前
DAOXIAN发布了新的文献求助10
10秒前
12秒前
皮皮完成签到 ,获得积分10
16秒前
17秒前
mogekkko发布了新的文献求助10
17秒前
拉长的迎曼完成签到 ,获得积分10
20秒前
21秒前
乐乐应助小飞采纳,获得10
21秒前
21秒前
26秒前
sunny完成签到 ,获得积分10
30秒前
zjh完成签到 ,获得积分10
31秒前
赘婿应助mogekkko采纳,获得10
32秒前
zbb123完成签到 ,获得积分10
33秒前
AamirAli完成签到,获得积分10
35秒前
汉堡包应助小飞采纳,获得10
35秒前
拿铁小笼包完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
43秒前
DAOXIAN完成签到,获得积分10
44秒前
48秒前
cqhecq完成签到,获得积分10
48秒前
taku完成签到 ,获得积分10
49秒前
香蕉觅云应助hyodong采纳,获得10
50秒前
打打应助赵振辉采纳,获得10
50秒前
52秒前
52秒前
情怀应助有魅力的仙人掌采纳,获得10
52秒前
斯文败类应助小飞采纳,获得10
53秒前
mogekkko发布了新的文献求助10
54秒前
54秒前
npknpk发布了新的文献求助10
56秒前
57秒前
叶子发布了新的文献求助10
59秒前
59秒前
1分钟前
huhu发布了新的文献求助10
1分钟前
壮观冷卉完成签到,获得积分10
1分钟前
FashionBoy应助npknpk采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332