A Drone-Driven Delivery Network Design for an On-Demand O2O Platform Considering Hazard Risks and Customer Heterogeneity

无人机 危害 业务 计算机科学 遗传学 生物 有机化学 化学
作者
Xuting Sun,Xinhang Li
出处
期刊:Asia-Pacific Journal of Operational Research [World Scientific]
卷期号:41 (04) 被引量:1
标识
DOI:10.1142/s0217595924400049
摘要

Nowadays, the online-to-offline (O2O) retailers provide on-demand delivery service for online orders by their own fleets and riders. An intelligent delivery network lays an important foundation to support cost-effective delivery service in the long run. Drones have great potential to revolutionize the instant delivery industry regarding cost and timeliness, while the hazard risks to humans and the environment should be seriously considered through sophisticated network design. In this paper, we propose a framework for a drone-driven intelligent delivery network design problem with the consideration of the multi-dimensional risk map, which needs to determine store location, drone fleet size and allocation, customer assignment, customer delivery mode selection, and delivery routing. A bi-objective non-linear programming model is formulated to maximize profit and minimize integrated risks as well. To tackle large instances, a modified NSGA-III algorithm is developed, which is incorporated with problem-specific search operators and Pareto local search to obtain Pareto solutions efficiently. Real-world data-based numerical experiments are conducted to verify the performance of the modified NSGA-III algorithm compared to the modified NSGA-II. A case study based on the geographical information in Shanghai is analyzed to validate the effectiveness of the proposed model. Moreover, sensitivity analysis is presented to evaluate the effects of multiple parameters on the drone delivery service network design. Some managerial insights are obtained for the O2O retailer who offers on-demand delivery service through online platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Davy_Y采纳,获得10
1秒前
suchui完成签到,获得积分10
1秒前
沉静的含海完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助keep采纳,获得10
4秒前
4秒前
Lucas应助摇瓶子的蜗牛采纳,获得10
5秒前
帮帮孩子完成签到,获得积分10
6秒前
6秒前
123456完成签到 ,获得积分10
7秒前
7秒前
钰天心应助余问芙采纳,获得10
8秒前
8秒前
All_too_well发布了新的文献求助10
8秒前
heisproton发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
十八稀发布了新的文献求助10
10秒前
10秒前
机智翼发布了新的文献求助10
10秒前
suijinicheng完成签到,获得积分10
10秒前
科研小白发布了新的文献求助10
11秒前
ding应助伶俐的平蓝采纳,获得10
12秒前
12秒前
YXY完成签到,获得积分20
12秒前
英俊的铭应助明理的枫叶采纳,获得10
12秒前
爆米花应助丫丫采纳,获得10
13秒前
6666发布了新的文献求助10
13秒前
呃呃呃c发布了新的文献求助10
13秒前
英俊的铭应助多吃元气饭采纳,获得30
14秒前
1234567完成签到,获得积分10
14秒前
bkagyin应助忧虑的安青采纳,获得10
14秒前
田様应助浏阳河采纳,获得10
14秒前
15秒前
细心的小鸽子完成签到,获得积分10
15秒前
thchiang完成签到 ,获得积分10
15秒前
嵇丹雪发布了新的文献求助10
16秒前
完美世界应助由加采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758