亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Drone-Driven Delivery Network Design for an On-Demand O2O Platform Considering Hazard Risks and Customer Heterogeneity

无人机 危害 业务 计算机科学 遗传学 生物 有机化学 化学
作者
Xuting Sun,Xinhang Li
出处
期刊:Asia-Pacific Journal of Operational Research [World Scientific]
卷期号:41 (04) 被引量:1
标识
DOI:10.1142/s0217595924400049
摘要

Nowadays, the online-to-offline (O2O) retailers provide on-demand delivery service for online orders by their own fleets and riders. An intelligent delivery network lays an important foundation to support cost-effective delivery service in the long run. Drones have great potential to revolutionize the instant delivery industry regarding cost and timeliness, while the hazard risks to humans and the environment should be seriously considered through sophisticated network design. In this paper, we propose a framework for a drone-driven intelligent delivery network design problem with the consideration of the multi-dimensional risk map, which needs to determine store location, drone fleet size and allocation, customer assignment, customer delivery mode selection, and delivery routing. A bi-objective non-linear programming model is formulated to maximize profit and minimize integrated risks as well. To tackle large instances, a modified NSGA-III algorithm is developed, which is incorporated with problem-specific search operators and Pareto local search to obtain Pareto solutions efficiently. Real-world data-based numerical experiments are conducted to verify the performance of the modified NSGA-III algorithm compared to the modified NSGA-II. A case study based on the geographical information in Shanghai is analyzed to validate the effectiveness of the proposed model. Moreover, sensitivity analysis is presented to evaluate the effects of multiple parameters on the drone delivery service network design. Some managerial insights are obtained for the O2O retailer who offers on-demand delivery service through online platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
e麓绝尘完成签到 ,获得积分10
1秒前
10秒前
11秒前
dawnfrf应助科研通管家采纳,获得30
12秒前
选波发布了新的文献求助10
14秒前
Linlin潘发布了新的文献求助10
18秒前
浮游应助zzzz采纳,获得10
22秒前
简单完成签到 ,获得积分10
24秒前
24秒前
lu发布了新的文献求助10
29秒前
38秒前
小二郎应助Linlin潘采纳,获得10
41秒前
祁瓀完成签到,获得积分10
54秒前
顾矜应助选波采纳,获得10
57秒前
1分钟前
neao完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
选波发布了新的文献求助10
1分钟前
1分钟前
赵方赢发布了新的文献求助10
1分钟前
万海发布了新的文献求助10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
lu完成签到,获得积分10
1分钟前
FashionBoy应助选波采纳,获得10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
CipherSage应助赵方赢采纳,获得10
1分钟前
852应助万海采纳,获得10
1分钟前
万海完成签到,获得积分10
1分钟前
Ava应助万海采纳,获得10
1分钟前
cqhecq完成签到,获得积分10
1分钟前
无花果应助水水水采纳,获得10
2分钟前
Hello应助111采纳,获得10
2分钟前
2分钟前
水水水发布了新的文献求助10
2分钟前
领导范儿应助水水水采纳,获得10
2分钟前
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644657
求助须知:如何正确求助?哪些是违规求助? 4764939
关于积分的说明 15025437
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567819
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958