A Drone-Driven Delivery Network Design for an On-Demand O2O Platform Considering Hazard Risks and Customer Heterogeneity

无人机 危害 业务 计算机科学 遗传学 生物 有机化学 化学
作者
Xuting Sun,Xinhang Li
出处
期刊:Asia-Pacific Journal of Operational Research [World Scientific]
卷期号:41 (04) 被引量:1
标识
DOI:10.1142/s0217595924400049
摘要

Nowadays, the online-to-offline (O2O) retailers provide on-demand delivery service for online orders by their own fleets and riders. An intelligent delivery network lays an important foundation to support cost-effective delivery service in the long run. Drones have great potential to revolutionize the instant delivery industry regarding cost and timeliness, while the hazard risks to humans and the environment should be seriously considered through sophisticated network design. In this paper, we propose a framework for a drone-driven intelligent delivery network design problem with the consideration of the multi-dimensional risk map, which needs to determine store location, drone fleet size and allocation, customer assignment, customer delivery mode selection, and delivery routing. A bi-objective non-linear programming model is formulated to maximize profit and minimize integrated risks as well. To tackle large instances, a modified NSGA-III algorithm is developed, which is incorporated with problem-specific search operators and Pareto local search to obtain Pareto solutions efficiently. Real-world data-based numerical experiments are conducted to verify the performance of the modified NSGA-III algorithm compared to the modified NSGA-II. A case study based on the geographical information in Shanghai is analyzed to validate the effectiveness of the proposed model. Moreover, sensitivity analysis is presented to evaluate the effects of multiple parameters on the drone delivery service network design. Some managerial insights are obtained for the O2O retailer who offers on-demand delivery service through online platform.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助任任任采纳,获得10
1秒前
LYX完成签到,获得积分10
1秒前
朱紫祎应助文件撤销了驳回
2秒前
3秒前
peng1发布了新的文献求助10
3秒前
3秒前
4秒前
bkagyin应助自由元菱采纳,获得10
4秒前
粽子完成签到,获得积分10
5秒前
研友_VZG7GZ应助谢梓良采纳,获得10
5秒前
6秒前
6秒前
7秒前
小马甲应助没有熬夜采纳,获得10
7秒前
懒懒发布了新的文献求助10
8秒前
9秒前
哈哈发布了新的文献求助10
9秒前
上官若男应助Wri采纳,获得10
9秒前
研友_VZG7GZ应助满意的不二采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
谢梓良完成签到,获得积分10
12秒前
12秒前
平常寻冬发布了新的文献求助50
12秒前
深情安青应助Cdws采纳,获得10
12秒前
14秒前
14秒前
14秒前
14秒前
赘婿应助何处芳歇采纳,获得10
15秒前
核桃发布了新的文献求助10
15秒前
16秒前
跃天杜完成签到,获得积分10
16秒前
ssllmm发布了新的文献求助10
17秒前
17秒前
北望发布了新的文献求助20
19秒前
英俊的铭应助天际采纳,获得10
19秒前
cqwswfl发布了新的文献求助10
19秒前
Ffan完成签到 ,获得积分10
19秒前
懒懒完成签到,获得积分10
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736