阳极
材料科学
法拉第效率
阴极
化学工程
电极
水分
电解质
复合材料
纳米技术
化学
物理化学
工程类
作者
Helin Wang,Ahu Shao,Ruijun Pan,Wei Quan Tian,Qiurong Jia,Min Zhang,Miao Bai,Zhiqiao Wang,Fu Liu,Ting Liu,Xiaoyu Tang,Shaowen Li,Yue Ma
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-10-24
卷期号:17 (21): 21850-21864
被引量:2
标识
DOI:10.1021/acsnano.3c07869
摘要
The scalable development of an environmentally adaptive and homogeneous Li+ supplementary route remains a formidable challenge for the existing prelithiation technologies, restricting the full potential of high-capacity anodes. In this study, we present a moisture-tolerant interfacial prelithiation approach through casting a hydrophobic poly(vinylidene-co-hexafluoropropylene) membrane blended with a deep-lithiated alloy (Li22Si5@C/PVDF-HFP) onto Si based anodes. This strategy could not only extend to various high-capacity anode systems (SiOx@C, hard carbon) but also align with industrial roll-to-roll assembly processes. By carefully adjusting the thickness of the prelithiation layer, the densely packed Si@C electrode (4.5 mAh cm-2) exhibits significantly improved initial Coulombic efficiency until a close-to-unit value, as well as extreme moisture tolerance (60% relative humidity). Furthermore, it achieves more than 10-fold enhancement of ionic conductivity across the electrode. As pairing the prelithiated Si@C anode with the LiNi0.8Co0.1Mn0.1O2 cathode, the 2 Ah pouch-format prototype balances an energy density of ∼371 Wh kg-1 and an extreme power output of 2450 W kg-1 as well as 83.8% capacity retention for 1000 cycles. The combined operando phase tracking and spatial arrangement analysis of the intermediate alloy elucidate that the enhanced Li utilization derives from the gradient stress dissipation model upon a spontaneous Li+ redistribution process.
科研通智能强力驱动
Strongly Powered by AbleSci AI