Integration of Deep Learning and Sequential Metabolism to Rapidly Screen Dipeptidyl Peptidase (DPP)-IV Inhibitors from Gardenia jasminoides Ellis

栀子花 二肽基肽酶 二肽基肽酶-4 化学 药物代谢 新陈代谢 生物化学 植物 生物 医学 糖尿病 内分泌学 替代医学 病理 2型糖尿病
作者
Huining Liu,Shuang Yu,Xueyan Li,Xinyu Wang,Dongying Qi,Fulu Pan,Xiaoyu Chai,Qianqian Wang,Yanli Pan,Lei Zhang,Yang Liu
出处
期刊:Molecules [Multidisciplinary Digital Publishing Institute]
卷期号:28 (21): 7381-7381 被引量:3
标识
DOI:10.3390/molecules28217381
摘要

Traditional Chinese medicine (TCM) possesses unique advantages in the management of blood glucose and lipids. However, there is still a significant gap in the exploration of its pharmacologically active components. Integrated strategies encompassing deep-learning prediction models and active validation based on absorbable ingredients can greatly improve the identification rate and screening efficiency in TCM. In this study, the affinity prediction of 11,549 compounds from the traditional Chinese medicine system's pharmacology database (TCMSP) with dipeptidyl peptidase-IV (DPP-IV) based on a deep-learning model was firstly conducted. With the results, Gardenia jasminoides Ellis (GJE), a food medicine with homologous properties, was selected as a model drug. The absorbed components of GJE were subsequently identified through in vivo intestinal perfusion and oral administration. As a result, a total of 38 prototypical absorbed components of GJE were identified. These components were analyzed to determine their absorption patterns after intestinal, hepatic, and systemic metabolism. Virtual docking and DPP-IV enzyme activity experiments were further conducted to validate the inhibitory effects and potential binding sites of the common constituents of deep learning and sequential metabolism. The results showed a significant DPP-IV inhibitory activity (IC50 53 ± 0.63 μg/mL) of the iridoid glycosides' potent fractions, which is a novel finding. Genipin 1-gentiobioside was screened as a promising new DPP-IV inhibitor in GJE. These findings highlight the potential of this innovative approach for the rapid screening of active ingredients in TCM and provide insights into the molecular mechanisms underlying the anti-diabetic activity of GJE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
東南風完成签到,获得积分10
刚刚
张凡完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
儒雅致远发布了新的文献求助10
1秒前
1秒前
1秒前
tongtongtong发布了新的文献求助10
2秒前
疯狂的蜡烛完成签到,获得积分10
2秒前
传奇3应助可耐的毛衣采纳,获得10
2秒前
2秒前
BigKang完成签到,获得积分20
2秒前
May完成签到,获得积分10
3秒前
huifang完成签到,获得积分10
4秒前
dong应助顺心迎梦采纳,获得10
4秒前
斯文败类应助收集快乐采纳,获得10
4秒前
4秒前
yooloo发布了新的文献求助10
4秒前
zz发布了新的文献求助10
5秒前
5秒前
顺利毕业呀完成签到,获得积分10
5秒前
DDKK关注了科研通微信公众号
5秒前
cs发布了新的文献求助10
6秒前
6秒前
BigKang发布了新的文献求助10
6秒前
FashionBoy应助whitezhu采纳,获得30
7秒前
乘风破浪发布了新的文献求助10
7秒前
阿杰完成签到,获得积分10
7秒前
小王发布了新的文献求助10
8秒前
8秒前
张慧仪发布了新的文献求助10
8秒前
vergil完成签到,获得积分10
9秒前
一川烟雨完成签到,获得积分10
9秒前
遇简完成签到,获得积分10
9秒前
10秒前
11秒前
我行我素发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
ark861023发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600