直接金属激光烧结
材料科学
生物医学工程
植入
刚度
扫描电子显微镜
X射线显微断层摄影术
多孔性
牙科
复合材料
医学
外科
微观结构
放射科
作者
Anutosh Chakraborty,Ankita Das,Pallab Datta,Santanu Majumder,Ananya Barui,Amit Roychowdhury
出处
期刊:ACS applied bio materials
[American Chemical Society]
日期:2023-09-15
卷期号:6 (10): 4178-4189
标识
DOI:10.1021/acsabm.3c00403
摘要
Objective: Loosening of dental implants due to resorption of the surrounding bone is one of the challenging clinical complications in prosthetic dentistry. Generally, stiffness mismatch between an implant and its surrounding bone is one of the major factors. In order to prevent such clinical consequences, it is essential to develop implants with customized stiffness. The present study investigates the computational and experimental biomechanical responses together with cytocompatibility studies of three-dimensional (3D)-printed Ti-6Al-4V-based porous dental implants with varied stiffness properties. Methods: Additive manufacturing (direct metal laser sintering, DMLS) was utilized to create Ti-6Al-4V implants having distinct porosities and pore sizes (650 and 1000 μm), along with a nonporous (solid) implant. To validate the compression testing of the constructed implants and to probe their biomechanical response, finite element models were employed. The cytocompatibility of the implants was assessed using MG-63 cells, in vitro. Results: Both X-ray microcomputed tomography (μ-CT) and scanning electron microscopy (SEM) studies illustrated the ability of DMLS to produce implants with the designed porosities. Biomechanical analysis results revealed that the porous implants had less stiffness and were suitable for providing the appropriate peri-implant bone strain. Although all of the manufactured implants demonstrated cell adhesion and proliferation, the porous implants in particular supported better bone cell growth and extracellular matrix deposition. Conclusions: 3D-printed porous implants showed tunable stiffness properties with clinical translational potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI