Performance evaluation of machine learning techniques in predicting cumulative absolute velocity

平均绝对百分比误差 均方误差 人工智能 机器学习 支持向量机 随机森林 人工神经网络 计算机科学 阿达布思 估计员 最小绝对偏差 离群值 线性回归 模式识别(心理学) 统计 数学
作者
Fahrettin Kuran,Gülüm Tanırcan,Elham Pashaei
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier BV]
卷期号:174: 108175-108175 被引量:11
标识
DOI:10.1016/j.soildyn.2023.108175
摘要

Cumulative absolute velocity (CAV) is a powerful intensity measure for quantifying potential earthquake damage to structures. Machine learning (ML) methods can provide more accurate and reliable predictions of cumulative absolute velocity due to handling nonlinear relationships, adaptability to changing conditions, automation, efficiency, and the potential for real-time predictions. This study aims to identify machine learning regressions with the highest accuracy for CAV prediction. Several supervised machine learning algorithms were applied and comprehensively compared for performance and accuracy in CAV prediction using the recently compiled Turkish strong-motion database. Support Vector Machine, Linear Regression, Random Forest, Artificial Neural Network, Bayesian Ridge Regression, and Gradient Boosting algorithms were evaluated and compared with traditional Ground Motion Models (GMMs). Two new datasets including 24,667 strong-motion recordings from Turkiye along with global strong-motion recordings are used to build machine learning models. The first dataset contains all recordings of events with 3.5≤MomentMagnitude(Mw)≤7.6, while the second dataset contains only recordings with Mw≥5.5. Moreover, feature selection and outlier detection were performed as preprocessing steps to choose the best of seven CAV estimator parameters in order to boost the ML model performance. To measure the performance of ML methods five evaluation metrics were utilized which are mean square error (MSE), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), and correlation coefficient (R). Comparative assessment of the machine learning algorithms suggests that models trained by Mw≥5.5 dataset are quite successful in CAV prediction compared to predictive models trained by the 3.5≤Mw≤7.6 dataset. The result proves that the Gradient Boosting models significantly outperform the other machine learning algorithms in terms of R and RMSE. Machine learning techniques are more successful with user-selected estimators representing the key components that make up earthquake recordings. Finally, the machine learning-based CAV prediction models for Turkiye are compared with available CAV GMMs, and it is observed that the machine learning-based models can predict CAV as successfully as GMMs if there are a sufficient number of recordings for training machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘蝶衣完成签到,获得积分10
刚刚
称心熠彤完成签到,获得积分10
刚刚
桐桐应助孤独的匕采纳,获得10
1秒前
彭于彦祖应助FF采纳,获得10
1秒前
1秒前
2秒前
Kim发布了新的文献求助10
2秒前
领导范儿应助霸王龙采纳,获得10
3秒前
3秒前
3秒前
roaring发布了新的文献求助10
6秒前
sunday2024完成签到,获得积分10
6秒前
小二郎应助袁寒烟采纳,获得10
6秒前
8秒前
温不胜的破木吉他完成签到 ,获得积分10
8秒前
时泰发布了新的文献求助10
8秒前
9秒前
武似星飞完成签到,获得积分10
9秒前
10秒前
科研通AI5应助hhhhxxxx采纳,获得10
10秒前
10秒前
10秒前
wkz应助彳亍采纳,获得10
10秒前
鲤鱼月饼完成签到 ,获得积分10
11秒前
说好的丶丶完成签到,获得积分10
11秒前
ohh完成签到 ,获得积分20
11秒前
张教授发布了新的文献求助20
12秒前
12秒前
Lazarus完成签到,获得积分10
12秒前
MZT完成签到,获得积分10
13秒前
清光发布了新的文献求助10
13秒前
丘比特应助爱听歌的南露采纳,获得10
14秒前
Kim完成签到,获得积分10
14秒前
冉宝完成签到,获得积分10
15秒前
16秒前
LL完成签到,获得积分10
16秒前
17秒前
小慧儿发布了新的文献求助20
18秒前
18秒前
19秒前
高分求助中
All the Birds of the World 3000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3719232
求助须知:如何正确求助?哪些是违规求助? 3265766
关于积分的说明 9940754
捐赠科研通 2979547
什么是DOI,文献DOI怎么找? 1634110
邀请新用户注册赠送积分活动 775591
科研通“疑难数据库(出版商)”最低求助积分说明 745708