Performance of CT-based deep learning in diagnostic assessment of suspicious lateral lymph nodes in papillary thyroid cancer: a prospective diagnostic study

医学 接收机工作特性 放射科 医学诊断 诊断准确性 转移 曲线下面积 甲状腺乳突癌 淋巴 手术计划 甲状腺癌 癌症 病理 内科学 药代动力学
作者
Guibin Zheng,Haicheng Zhang,Lin Fang,Mark Zafereo,Neil D. Gross,Peng Sun,Ling Yang,Hui‐Chuan Sun,Guoqing Wu,Shujian Wei,Jiayu Wu,Ning Mao,Guojun Li,Guojun Wu,Haitao Zheng,Xuejiao Song
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:109 (11): 3337-3345 被引量:2
标识
DOI:10.1097/js9.0000000000000660
摘要

Preoperative evaluation of the metastasis status of lateral lymph nodes (LNs) in papillary thyroid cancer is challenging. Strategies for using deep learning to diagnosis of lateral LN metastasis require additional development and testing. This study aimed to build a deep learning-based model to distinguish benign lateral LNs from metastatic lateral LNs in papillary thyroid cancer and test the model's diagnostic performance in a real-world clinical setting.This was a prospective diagnostic study. An ensemble model integrating a three-dimensional residual network algorithm with clinical risk factors available before surgery was developed based on computed tomography images of lateral LNs in an internal dataset and validated in two external datasets. The diagnostic performance of the ensemble model was tested and compared with the results of fine-needle aspiration (FNA) (used as the standard reference method) and the diagnoses made by two senior radiologists in 113 suspicious lateral LNs in patients enrolled prospectively.The area under the receiver operating characteristic curve of the ensemble model for diagnosing suspicious lateral LNs was 0.829 (95% CI: 0.732-0.927). The sensitivity and specificity of the ensemble model were 0.839 (95% CI: 0.762-0.916) and 0.769 (95% CI: 0.607-0.931), respectively. The diagnostic accuracy of the ensemble model was 82.3%. With FNA results as the criterion standard, the ensemble model had excellent diagnostic performance ( P =0.115), similar to that of the two senior radiologists ( P =1.000 and P =0.392, respectively).A three-dimensional residual network-based ensemble model was successfully developed for the diagnostic assessment of suspicious lateral LNs and achieved diagnostic performance similar to that of FNA and senior radiologists. The model appears promising for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
addi111完成签到,获得积分10
1秒前
2秒前
契咯发布了新的文献求助30
3秒前
XxxxxxENT完成签到,获得积分10
3秒前
4秒前
Orange应助ohooo采纳,获得10
5秒前
zhou发布了新的文献求助10
6秒前
迟迟完成签到 ,获得积分20
7秒前
7秒前
落清欢发布了新的文献求助10
8秒前
科研通AI6应助契咯采纳,获得30
8秒前
kgrvlm完成签到 ,获得积分10
8秒前
wuli林完成签到,获得积分10
9秒前
George发布了新的文献求助200
9秒前
qianlan发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
科研通AI6应助还行吧采纳,获得10
12秒前
12秒前
jiaao完成签到,获得积分10
13秒前
567发布了新的文献求助10
14秒前
科研通AI6应助邪恶小天使采纳,获得30
14秒前
kimon发布了新的文献求助10
15秒前
姜姜关注了科研通微信公众号
15秒前
16秒前
16秒前
彭笑笑发布了新的文献求助10
16秒前
ohooo发布了新的文献求助10
16秒前
11_aa完成签到 ,获得积分10
17秒前
贾克斯发布了新的文献求助10
18秒前
litpand发布了新的文献求助10
19秒前
陶醉平灵发布了新的文献求助10
20秒前
浮游应助ccc采纳,获得10
20秒前
20秒前
王鹤霏完成签到,获得积分10
21秒前
21秒前
Vi发布了新的文献求助30
21秒前
华仔应助qianlan采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462695
求助须知:如何正确求助?哪些是违规求助? 4567400
关于积分的说明 14310270
捐赠科研通 4493273
什么是DOI,文献DOI怎么找? 2461536
邀请新用户注册赠送积分活动 1450570
关于科研通互助平台的介绍 1425885