Performance of CT-based deep learning in diagnostic assessment of suspicious lateral lymph nodes in papillary thyroid cancer: a prospective diagnostic study

医学 接收机工作特性 放射科 医学诊断 诊断准确性 转移 曲线下面积 甲状腺乳突癌 淋巴 手术计划 甲状腺癌 癌症 病理 内科学 药代动力学
作者
Guibin Zheng,Haicheng Zhang,Lin Fang,Mark Zafereo,Neil D. Gross,Peng Sun,Ling Yang,Hui‐Chuan Sun,Guoqing Wu,Shujian Wei,Jiayu Wu,Ning Mao,Guojun Li,Guojun Wu,Haitao Zheng,Xuejiao Song
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:109 (11): 3337-3345 被引量:2
标识
DOI:10.1097/js9.0000000000000660
摘要

Preoperative evaluation of the metastasis status of lateral lymph nodes (LNs) in papillary thyroid cancer is challenging. Strategies for using deep learning to diagnosis of lateral LN metastasis require additional development and testing. This study aimed to build a deep learning-based model to distinguish benign lateral LNs from metastatic lateral LNs in papillary thyroid cancer and test the model's diagnostic performance in a real-world clinical setting.This was a prospective diagnostic study. An ensemble model integrating a three-dimensional residual network algorithm with clinical risk factors available before surgery was developed based on computed tomography images of lateral LNs in an internal dataset and validated in two external datasets. The diagnostic performance of the ensemble model was tested and compared with the results of fine-needle aspiration (FNA) (used as the standard reference method) and the diagnoses made by two senior radiologists in 113 suspicious lateral LNs in patients enrolled prospectively.The area under the receiver operating characteristic curve of the ensemble model for diagnosing suspicious lateral LNs was 0.829 (95% CI: 0.732-0.927). The sensitivity and specificity of the ensemble model were 0.839 (95% CI: 0.762-0.916) and 0.769 (95% CI: 0.607-0.931), respectively. The diagnostic accuracy of the ensemble model was 82.3%. With FNA results as the criterion standard, the ensemble model had excellent diagnostic performance ( P =0.115), similar to that of the two senior radiologists ( P =1.000 and P =0.392, respectively).A three-dimensional residual network-based ensemble model was successfully developed for the diagnostic assessment of suspicious lateral LNs and achieved diagnostic performance similar to that of FNA and senior radiologists. The model appears promising for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Taycarver发布了新的文献求助10
刚刚
1秒前
彭于晏应助feilong采纳,获得10
1秒前
Hsu发布了新的文献求助10
1秒前
fyf发布了新的文献求助10
1秒前
星辰大海应助佳丽采纳,获得10
1秒前
chen发布了新的文献求助20
1秒前
所所应助yiren采纳,获得30
1秒前
沐浴清风完成签到 ,获得积分10
2秒前
浮游应助FJM采纳,获得10
2秒前
sky发布了新的文献求助10
2秒前
2秒前
妞妞发布了新的文献求助10
2秒前
小楼初晴完成签到,获得积分10
2秒前
王大卫发布了新的文献求助10
2秒前
lucyliu发布了新的文献求助10
2秒前
3秒前
shelemi发布了新的文献求助10
3秒前
佩奇小猪关注了科研通微信公众号
3秒前
3秒前
乐乐应助霸气忙内采纳,获得10
3秒前
温暖寻雪完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
C.Z.Young发布了新的文献求助10
5秒前
5秒前
于浩发布了新的文献求助10
5秒前
5秒前
刘妞妞应助爱听歌老1采纳,获得10
5秒前
乐乐应助沉默手套采纳,获得10
6秒前
6秒前
6秒前
FashionBoy应助愉快的戎采纳,获得10
7秒前
7秒前
7秒前
温暖寻雪发布了新的文献求助50
8秒前
李健应助粉面菜蛋采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560552
求助须知:如何正确求助?哪些是违规求助? 3986658
关于积分的说明 12343469
捐赠科研通 3657426
什么是DOI,文献DOI怎么找? 2014919
邀请新用户注册赠送积分活动 1049681
科研通“疑难数据库(出版商)”最低求助积分说明 937867