Performance of CT-based deep learning in diagnostic assessment of suspicious lateral lymph nodes in papillary thyroid cancer: a prospective diagnostic study

医学 接收机工作特性 放射科 医学诊断 诊断准确性 转移 曲线下面积 甲状腺乳突癌 淋巴 手术计划 甲状腺癌 癌症 病理 内科学 药代动力学
作者
Guibin Zheng,Haicheng Zhang,Lin Fang,Mark Zafereo,Neil D. Gross,Peng Sun,Ling Yang,Hui‐Chuan Sun,Guoqing Wu,Shujian Wei,Jiayu Wu,Ning Mao,Guojun Li,Guojun Wu,Haitao Zheng,Xuejiao Song
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:109 (11): 3337-3345 被引量:2
标识
DOI:10.1097/js9.0000000000000660
摘要

Preoperative evaluation of the metastasis status of lateral lymph nodes (LNs) in papillary thyroid cancer is challenging. Strategies for using deep learning to diagnosis of lateral LN metastasis require additional development and testing. This study aimed to build a deep learning-based model to distinguish benign lateral LNs from metastatic lateral LNs in papillary thyroid cancer and test the model's diagnostic performance in a real-world clinical setting.This was a prospective diagnostic study. An ensemble model integrating a three-dimensional residual network algorithm with clinical risk factors available before surgery was developed based on computed tomography images of lateral LNs in an internal dataset and validated in two external datasets. The diagnostic performance of the ensemble model was tested and compared with the results of fine-needle aspiration (FNA) (used as the standard reference method) and the diagnoses made by two senior radiologists in 113 suspicious lateral LNs in patients enrolled prospectively.The area under the receiver operating characteristic curve of the ensemble model for diagnosing suspicious lateral LNs was 0.829 (95% CI: 0.732-0.927). The sensitivity and specificity of the ensemble model were 0.839 (95% CI: 0.762-0.916) and 0.769 (95% CI: 0.607-0.931), respectively. The diagnostic accuracy of the ensemble model was 82.3%. With FNA results as the criterion standard, the ensemble model had excellent diagnostic performance ( P =0.115), similar to that of the two senior radiologists ( P =1.000 and P =0.392, respectively).A three-dimensional residual network-based ensemble model was successfully developed for the diagnostic assessment of suspicious lateral LNs and achieved diagnostic performance similar to that of FNA and senior radiologists. The model appears promising for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甘棠完成签到,获得积分10
1秒前
笨笨千亦完成签到 ,获得积分10
1秒前
andrew完成签到,获得积分10
1秒前
甜蜜水蜜桃完成签到 ,获得积分10
2秒前
大豆终结者完成签到,获得积分10
2秒前
程程完成签到,获得积分10
3秒前
3秒前
科研小菜完成签到 ,获得积分10
3秒前
大曼完成签到,获得积分10
3秒前
小盆呐完成签到,获得积分10
4秒前
123关注了科研通微信公众号
6秒前
LFY完成签到 ,获得积分10
6秒前
上官若男应助123采纳,获得10
7秒前
M星人发布了新的文献求助10
9秒前
Liziqi823完成签到,获得积分10
11秒前
神勇千万完成签到,获得积分10
11秒前
汉堡包应助KevinDante采纳,获得30
12秒前
靓丽衫完成签到 ,获得积分10
12秒前
12秒前
labordoc完成签到,获得积分10
12秒前
子车谷波完成签到,获得积分20
15秒前
赘婿应助crave采纳,获得10
15秒前
青天鸟1989完成签到,获得积分10
16秒前
詹密完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
雪莉酒完成签到,获得积分10
17秒前
QYY完成签到,获得积分10
19秒前
科目三应助Lee采纳,获得10
23秒前
25秒前
云轩完成签到,获得积分10
27秒前
酸菜萌萌鱼完成签到,获得积分10
27秒前
Preseverance完成签到,获得积分10
28秒前
Sunrise完成签到,获得积分10
28秒前
大力云朵完成签到,获得积分10
28秒前
好好完成签到,获得积分10
28秒前
aa完成签到,获得积分10
28秒前
无私诗桃发布了新的文献求助10
29秒前
小张在进步完成签到,获得积分10
29秒前
ntxlks发布了新的文献求助20
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259