MRI-only based material mass density and relative stopping power estimation via deep learning for proton therapy: a preliminary study

阻止力 质子疗法 质子 计算机科学 人工智能 核磁共振 物理 核物理学 电信 探测器
作者
Yuan Gao,Chih‐Wei Chang,Sagar Mandava,Raanan Marants,Jessica Scholey,Matthew Goette,Yang Lei,Hui Mao,Jeffrey D. Bradley,Tian Liu,Jun Zhou,Atchar Sudhyadhom,Xiaofeng Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:5
标识
DOI:10.1038/s41598-024-61869-8
摘要

Abstract Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yqzhang发布了新的文献求助10
刚刚
wss完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
汉堡包应助Cai采纳,获得10
1秒前
酷炫抽屉完成签到 ,获得积分10
1秒前
zeno123456完成签到,获得积分10
2秒前
bx发布了新的文献求助10
2秒前
zxl完成签到,获得积分20
2秒前
hailang820316完成签到,获得积分10
2秒前
4秒前
zxl发布了新的文献求助20
5秒前
追求发布了新的文献求助30
5秒前
南暮应助梁书铭采纳,获得10
6秒前
萌兰完成签到,获得积分10
6秒前
大西瓜发布了新的文献求助10
6秒前
米贝明z发布了新的文献求助10
7秒前
hug完成签到,获得积分10
8秒前
wangli发布了新的文献求助10
8秒前
9秒前
彭于晏应助同尘采纳,获得10
9秒前
英俊的铭应助夺命猪头采纳,获得150
10秒前
www发布了新的文献求助10
10秒前
单身的凡雁完成签到 ,获得积分20
10秒前
10秒前
11秒前
和谐的蜡烛完成签到,获得积分10
11秒前
NPG应助善良黑夜采纳,获得10
13秒前
13秒前
pyt发布了新的文献求助10
14秒前
高兴凌波发布了新的文献求助10
14秒前
李傲发布了新的文献求助10
16秒前
16秒前
希望天下0贩的0应助zxl采纳,获得20
17秒前
monere完成签到,获得积分0
17秒前
星辰大海应助迷路的睫毛采纳,获得10
18秒前
19秒前
20秒前
SongNan_Ding发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775376
求助须知:如何正确求助?哪些是违规求助? 3321021
关于积分的说明 10203165
捐赠科研通 3035891
什么是DOI,文献DOI怎么找? 1665880
邀请新用户注册赠送积分活动 797104
科研通“疑难数据库(出版商)”最低求助积分说明 757740