Multi‐scale dual attention embedded U‐shaped network for accurate segmentation of coronary vessels in digital subtraction angiography

计算机科学 分割 人工智能 减法 编码器 模式识别(心理学) 计算机视觉 特征(语言学) 连接组学 数学 算术 语言学 哲学 神经科学 连接体 功能连接 生物 操作系统
作者
He Deng,Yuqing Li,Xu Liu,Kai Cheng,Tong Fang,Xiangde Min
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17618
摘要

Abstract Background Most attention‐based networks fall short in effectively integrating spatial and channel‐wise information across different scales, which results in suboptimal performance for segmenting coronary vessels in x‐ray digital subtraction angiography (DSA) images. This limitation becomes particularly evident when attempting to identify tiny sub‐branches. Purpose To address this limitation, a multi‐scale dual attention embedded network (named MDA‐Net) is proposed to consolidate contextual spatial and channel information across contiguous levels and scales. Methods MDA‐Net employs five cascaded double‐convolution blocks within its encoder to adeptly extract multi‐scale features. It incorporates skip connections that facilitate the retention of low‐level feature details throughout the decoding phase, thereby enhancing the reconstruction of detailed image information. Furthermore, MDA modules, which take in features from neighboring scales and hierarchical levels, are tasked with discerning subtle distinctions between foreground elements, such as coronary vessels of diverse morphologies and dimensions, and the complex background, which includes structures like catheters or other tissues with analogous intensities. To sharpen the segmentation accuracy, the network utilizes a composite loss function that integrates intersection over union (IoU) loss with binary cross‐entropy loss, ensuring the precision of the segmentation outcomes and maintaining an equilibrium between positive and negative classifications. Results Experimental results demonstrate that MDA‐Net not only performs more robustly and effectively on DSA images under various image conditions, but also achieves significant advantages over state‐of‐the‐art methods, achieving the optimal scores in terms of IoU, Dice, accuracy, and Hausdorff distance 95%. Conclusions MDA‐Net has high robustness for coronary vessels segmentation, providing an active strategy for early diagnosis of cardiovascular diseases. The code is publicly available at https://github.com/30410B/MDA‐Net.git .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助leihai采纳,获得10
刚刚
刚刚
科研通AI2S应助ningmengcao采纳,获得10
刚刚
1秒前
1秒前
顾矜应助白凉鞋采纳,获得10
1秒前
1秒前
Owen应助Daitoue采纳,获得10
2秒前
Sue发布了新的文献求助30
2秒前
可爱的函函应助jjjwln采纳,获得10
2秒前
3秒前
CodeCraft应助wxy采纳,获得10
3秒前
4秒前
4秒前
仇悦完成签到,获得积分10
4秒前
迅速金鱼发布了新的文献求助10
4秒前
黄凯完成签到,获得积分10
4秒前
斯文败类应助李振华采纳,获得10
5秒前
5秒前
6秒前
薇薇发布了新的文献求助10
6秒前
简单初曼发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI2S应助laoli2022采纳,获得10
8秒前
文静元风完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
宋宋发布了新的文献求助10
10秒前
卓然不凡完成签到,获得积分10
10秒前
wanci应助畅快芝麻采纳,获得10
10秒前
10秒前
阿湫应助MM216采纳,获得10
11秒前
木子李发布了新的文献求助10
11秒前
江江。完成签到,获得积分10
11秒前
CodeCraft应助简单初曼采纳,获得10
11秒前
12秒前
ningmengcao完成签到,获得积分10
12秒前
英姑应助开心的芒果采纳,获得10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411077
求助须知:如何正确求助?哪些是违规求助? 3014545
关于积分的说明 8864373
捐赠科研通 2702074
什么是DOI,文献DOI怎么找? 1481422
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679351