An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猴发布了新的文献求助10
1秒前
酷酷的老太完成签到 ,获得积分20
1秒前
1秒前
锣大炮完成签到,获得积分10
2秒前
maqin完成签到,获得积分10
2秒前
小王完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
科研通AI2S应助lwei采纳,获得10
2秒前
幽默的念双完成签到,获得积分10
2秒前
正直冰露发布了新的文献求助10
3秒前
标致小伙发布了新的文献求助10
3秒前
3秒前
pinkdon完成签到,获得积分10
3秒前
5477完成签到,获得积分10
3秒前
4秒前
lins完成签到,获得积分20
4秒前
Orange应助cindy采纳,获得10
5秒前
5秒前
phz完成签到,获得积分10
5秒前
6秒前
所所应助积极的凌波采纳,获得10
6秒前
SV关注了科研通微信公众号
6秒前
白蕲完成签到,获得积分10
7秒前
调研昵称发布了新的文献求助20
7秒前
柔弱凡松发布了新的文献求助10
8秒前
yyds完成签到,获得积分10
9秒前
认真子默完成签到,获得积分10
9秒前
9秒前
9秒前
mylian完成签到,获得积分10
9秒前
11秒前
11秒前
SY发布了新的文献求助10
11秒前
可爱小哪吒完成签到,获得积分10
11秒前
斯文败类应助doudou采纳,获得10
12秒前
苹果完成签到,获得积分10
12秒前
12秒前
一颗咸蛋黄完成签到 ,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762