亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助善良的焦采纳,获得10
2秒前
gexzygg应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得30
8秒前
gexzygg应助科研通管家采纳,获得10
8秒前
gexzygg应助科研通管家采纳,获得10
8秒前
ceeray23应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得10
9秒前
10秒前
大方的笑萍完成签到 ,获得积分10
12秒前
WX完成签到 ,获得积分10
24秒前
Xjx6519发布了新的文献求助10
27秒前
38秒前
39秒前
yyck发布了新的文献求助10
42秒前
善良的焦发布了新的文献求助10
42秒前
HYQ完成签到 ,获得积分10
45秒前
新秀微博发布了新的文献求助10
56秒前
hodi完成签到,获得积分10
56秒前
mao完成签到 ,获得积分10
1分钟前
善良的焦完成签到,获得积分10
1分钟前
新秀微博完成签到,获得积分10
1分钟前
斜阳完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
涵雁完成签到 ,获得积分20
1分钟前
三千世界完成签到,获得积分10
1分钟前
李健应助gaijiaofanv采纳,获得10
1分钟前
尔白完成签到 ,获得积分10
1分钟前
1分钟前
gaijiaofanv发布了新的文献求助10
1分钟前
烤鱼片完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得20
2分钟前
雨霧雲完成签到,获得积分10
2分钟前
龍Ryu完成签到,获得积分10
2分钟前
aiai发布了新的文献求助10
2分钟前
2分钟前
tepqi发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643483
关于积分的说明 14671107
捐赠科研通 4584781
什么是DOI,文献DOI怎么找? 2515173
邀请新用户注册赠送积分活动 1489225
关于科研通互助平台的介绍 1459827