An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrY完成签到,获得积分20
刚刚
Lyven完成签到 ,获得积分10
刚刚
纪秋发布了新的文献求助10
刚刚
直率的青寒完成签到,获得积分10
刚刚
1秒前
万事顺意发布了新的文献求助10
1秒前
wxy发布了新的文献求助10
1秒前
rea完成签到,获得积分10
1秒前
Steven完成签到,获得积分10
1秒前
吴小苏完成签到,获得积分10
2秒前
ZYYZYY发布了新的文献求助30
2秒前
2秒前
2秒前
wwwu完成签到,获得积分10
2秒前
蜘猪侠发布了新的文献求助10
2秒前
科研通AI5应助烂漫的绿蝶采纳,获得10
2秒前
Gotyababy发布了新的文献求助10
3秒前
Yolo完成签到,获得积分10
3秒前
3秒前
Kenny发布了新的文献求助10
3秒前
3秒前
哪吒完成签到,获得积分20
3秒前
123466关注了科研通微信公众号
4秒前
oneday发布了新的文献求助10
4秒前
JIAYIWANG完成签到,获得积分20
4秒前
一直找不到文献完成签到 ,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
DrY发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
6秒前
领导范儿应助纪秋采纳,获得10
6秒前
小白一号完成签到,获得积分10
6秒前
6秒前
7秒前
赵卓发布了新的文献求助10
7秒前
高源完成签到,获得积分20
8秒前
好运来发发发完成签到,获得积分10
8秒前
Jasper应助7_蜗牛采纳,获得10
8秒前
充电宝应助机智的寒天采纳,获得10
8秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559