亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不安听露完成签到 ,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
7秒前
feifei0729完成签到,获得积分20
9秒前
momi发布了新的文献求助10
9秒前
养乐多敬你完成签到 ,获得积分10
10秒前
YJL完成签到 ,获得积分10
13秒前
14秒前
nhzz2023完成签到 ,获得积分0
16秒前
哈基米难背绿豆完成签到,获得积分20
16秒前
今后应助momi采纳,获得10
16秒前
19秒前
123456发布了新的文献求助10
20秒前
cyanpomelo完成签到,获得积分10
24秒前
教生物的杨教授完成签到,获得积分10
25秒前
25秒前
无语的巨人完成签到 ,获得积分10
29秒前
Ava应助111222333采纳,获得30
31秒前
34秒前
KY2022完成签到,获得积分10
37秒前
sadascaqwqw发布了新的文献求助10
39秒前
小秃子完成签到,获得积分10
42秒前
于yu完成签到 ,获得积分10
48秒前
48秒前
善良的灵羊完成签到 ,获得积分10
49秒前
貔貅完成签到,获得积分10
49秒前
53秒前
Criminology34举报wshyzhxxxn求助涉嫌违规
54秒前
sxmt123456789发布了新的文献求助30
54秒前
Nick_YFWS完成签到,获得积分10
54秒前
56秒前
天之道完成签到,获得积分10
56秒前
默笙完成签到 ,获得积分10
58秒前
天之道发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590314
求助须知:如何正确求助?哪些是违规求助? 4674693
关于积分的说明 14795069
捐赠科研通 4631138
什么是DOI,文献DOI怎么找? 2532671
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468599