亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
虞美人发布了新的文献求助30
13秒前
科研通AI5应助雪梨101采纳,获得10
16秒前
深情安青应助爹爹采纳,获得10
19秒前
科研通AI5应助追寻的访文采纳,获得10
21秒前
25秒前
爹爹完成签到,获得积分10
27秒前
爹爹发布了新的文献求助10
29秒前
小王爱看文献完成签到 ,获得积分10
35秒前
隐形的雁完成签到,获得积分10
42秒前
yyyyyy完成签到 ,获得积分10
50秒前
蕊蕊蕊完成签到 ,获得积分10
52秒前
58秒前
59秒前
赫十三发布了新的文献求助10
1分钟前
yuwen发布了新的文献求助10
1分钟前
1分钟前
GDD发布了新的文献求助10
1分钟前
Rondab应助哎呦呦呦采纳,获得10
1分钟前
jyy完成签到,获得积分10
1分钟前
小二郎应助xuexi采纳,获得10
1分钟前
twrw发布了新的文献求助10
1分钟前
souther完成签到,获得积分0
1分钟前
身法马可波罗完成签到 ,获得积分10
1分钟前
1分钟前
子凡完成签到 ,获得积分10
1分钟前
twrw完成签到,获得积分20
1分钟前
虞美人发布了新的文献求助10
2分钟前
科研通AI5应助XWY采纳,获得10
2分钟前
顾矜应助罗皮特采纳,获得10
2分钟前
猫猫逃离二次元完成签到,获得积分10
2分钟前
2分钟前
2分钟前
大意的绿蓉完成签到,获得积分10
2分钟前
2分钟前
2分钟前
尊敬雪萍发布了新的文献求助10
2分钟前
英姑应助重要的夏烟采纳,获得10
2分钟前
李健应助ssynkl采纳,获得10
2分钟前
Leffzeng完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968293
求助须知:如何正确求助?哪些是违规求助? 3513229
关于积分的说明 11166833
捐赠科研通 3248478
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874956
科研通“疑难数据库(出版商)”最低求助积分说明 804629