An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Queenie采纳,获得10
刚刚
BRID发布了新的文献求助10
1秒前
完美世界应助一池疏影乄采纳,获得10
1秒前
巧可脆脆发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
圣甲虫完成签到 ,获得积分10
2秒前
3秒前
jinbo发布了新的文献求助30
3秒前
3秒前
Altria发布了新的文献求助10
3秒前
二向箔完成签到,获得积分10
4秒前
最专业完成签到,获得积分10
4秒前
Luna完成签到,获得积分20
5秒前
大图图完成签到,获得积分10
5秒前
刘小花发布了新的文献求助10
5秒前
5秒前
激情的一刀完成签到,获得积分10
6秒前
好iiiiiiiiii发布了新的文献求助10
6秒前
6秒前
王淳完成签到 ,获得积分10
6秒前
专注灵凡发布了新的文献求助10
6秒前
6秒前
taozhiqi完成签到 ,获得积分10
7秒前
热情奇异果完成签到,获得积分10
7秒前
研友_VZG7GZ应助321654采纳,获得10
7秒前
7秒前
yesyesok发布了新的文献求助10
7秒前
蓝丝绒发布了新的文献求助10
8秒前
高高菠萝完成签到 ,获得积分10
8秒前
紫泠榭完成签到 ,获得积分10
8秒前
8秒前
ZHANES发布了新的文献求助10
9秒前
佳佳完成签到 ,获得积分10
9秒前
充电宝应助含蓄半邪采纳,获得10
10秒前
Tetrahydron发布了新的文献求助10
10秒前
222发布了新的文献求助10
10秒前
大个应助melisa采纳,获得10
11秒前
NIDADI发布了新的文献求助10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048