An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助开朗的幻桃采纳,获得10
2秒前
耍酷问兰发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
3秒前
cola121发布了新的文献求助10
3秒前
宋宋宋2完成签到,获得积分10
4秒前
jelly10发布了新的文献求助30
4秒前
Lucas应助失眠的夏柳采纳,获得10
5秒前
打打应助撖堡包采纳,获得30
5秒前
laruijoint完成签到,获得积分10
6秒前
超级幼旋应助迷路的夏之采纳,获得10
6秒前
7秒前
zjtttt发布了新的文献求助10
7秒前
在水一方应助jiejie采纳,获得10
7秒前
7秒前
科目三应助拼搏幻翠采纳,获得50
8秒前
8秒前
8秒前
晟sheng完成签到 ,获得积分10
8秒前
clyhg发布了新的文献求助10
8秒前
科研通AI6应助南西采纳,获得10
8秒前
lll发布了新的文献求助10
10秒前
11秒前
atonnng发布了新的文献求助10
12秒前
Orange应助健康的盼雁采纳,获得10
12秒前
12秒前
griffon完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
vv发布了新的文献求助20
14秒前
科研通AI6应助典雅的俊驰采纳,获得10
14秒前
DYL完成签到,获得积分10
16秒前
16秒前
平淡的井完成签到 ,获得积分10
17秒前
孤独的蚂蚁完成签到 ,获得积分10
17秒前
18秒前
田様应助张立敏采纳,获得10
18秒前
Hibiscus95完成签到,获得积分10
19秒前
科研通AI6应助wanglu采纳,获得10
20秒前
juzi发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514