已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Accurate Construction Method of E-commerce User Profile Based on Artificial Intelligence Algorithm and Big Data Analysis

计算机科学 聚类分析 数据挖掘 电子商务 大数据 相似性(几何) 算法 机器学习 人工智能 万维网 图像(数学)
作者
X. H. Li
出处
期刊:International Journal of High Speed Electronics and Systems [World Scientific]
标识
DOI:10.1142/s012915642540107x
摘要

User’s basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, psychological attributes, and other factors will lead to poor user experience, information overload, interference, and other negative effects. In order to develop more accurate marketing strategies, optimize user experience, and improve the conversion rate and user satisfaction of e-commerce platforms, an accurate construction method of e-commerce user profile based on artificial intelligence algorithm and big data analysis is proposed. Based on big data analysis technology, the basic attributes, behavior characteristics, value attributes, social attributes, interest attributes, and psychological attributes of e-commerce users are collected and integrated from multiple dimensions. The improved sequential pattern mining algorithm (PBWL) is applied to mine the frequent sequential pattern in the e-commerce user behavior, and to reveal the user’s behavior habit. The comprehensive attribute representation of e-commerce users is obtained by combining the LINE network model and the convolutional neural network. The firefly K-means clustering algorithm is used to cluster the e-commerce users, group the users based on the similarity of user attribute information, create different types of user clusters, and achieve the accurate construction of an e-commerce user profile. The experimental results show that this method can build an accurate e-commerce user profile and provide strong support for personalized recommendation and precision marketing of e-commerce platforms. This method can dig deeply into the behavior habits of e-commerce users and accurately reflect their interest preferences and consumption characteristics. This method can quickly and stably cluster e-commerce users, and the clustering effect of user profiles is optimal. This method can also divide the data into meaningful groups according to the user’s consumption behavior, and reveal the characteristics and values of different groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
gulu发布了新的文献求助10
7秒前
不安可愁完成签到,获得积分10
8秒前
hhhhhhh发布了新的文献求助10
9秒前
DBP87弹完成签到 ,获得积分10
9秒前
12秒前
学水看山发布了新的文献求助30
19秒前
123发布了新的文献求助10
23秒前
淡定成风应助阿拉哈哈笑采纳,获得10
23秒前
hhhhhhh完成签到,获得积分10
25秒前
善学以致用应助凌奕添采纳,获得10
27秒前
34秒前
40秒前
小吴完成签到,获得积分10
41秒前
zyh发布了新的文献求助10
44秒前
qq发布了新的文献求助50
44秒前
zyh完成签到,获得积分10
51秒前
Ronnieze完成签到 ,获得积分10
51秒前
53秒前
完美世界应助孙东玥采纳,获得10
54秒前
所所应助zyf采纳,获得10
57秒前
57秒前
凌奕添发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
树妖三三完成签到,获得积分10
1分钟前
完美世界应助自然的茉莉采纳,获得10
1分钟前
放逐发布了新的文献求助10
1分钟前
1分钟前
马马完成签到 ,获得积分10
1分钟前
充电宝应助mmm采纳,获得30
1分钟前
湘湘完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助清脆的书桃采纳,获得10
1分钟前
GingerF应助freshman采纳,获得100
1分钟前
zyf发布了新的文献求助10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197954
求助须知:如何正确求助?哪些是违规求助? 4379149
关于积分的说明 13637620
捐赠科研通 4234980
什么是DOI,文献DOI怎么找? 2323116
邀请新用户注册赠送积分活动 1321149
关于科研通互助平台的介绍 1271991