已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Strawberry R-CNN: Recognition and counting model of strawberry based on improved faster R-CNN

计算机科学 人工智能 卷积神经网络 双线性插值 模式识别(心理学) 计算机视觉
作者
Jiajun Li,Zifeng Zhu,Hongxin Liu,Yurong Su,Limiao Deng
出处
期刊:Ecological Informatics [Elsevier]
卷期号:77: 102210-102210 被引量:21
标识
DOI:10.1016/j.ecoinf.2023.102210
摘要

Computer technology's rapid advancement has significantly enhanced global agricultural modernization, notably improving agricultural production efficiency. Given the vulnerability of strawberries during the harvesting process, the automatic harvesting technology for strawberries necessitates a highly accurate recognition algorithm. In this paper, we introduce a model, Strawberry R-CNN, designed for intelligent recognition and counting of strawberries in natural environments. The Strawberry R-CNN model enhances strawberry recognition accuracy by refining the Faster R-CNN through several key modifications. Firstly, we replaced the VGG16 in the original Faster R-CNN with an improved multi-cascade network structure for feature extraction. This change allows for the capture of rich location data and detailed information typically absent in higher-level features. Secondly, the RoiPooling operation was replaced with RoiAlign to eliminate the error associated with the rounding method in two quantization stages. Lastly, we utilized a bilinear interpolation method for computation, preserving the floating-point number, and reducing model error. For strawberry counting, we proposed an efficient and practical evaluation method by creating an error set for strawberry counting. Experimental results demonstrated that the Strawberry R-CNN model achieved an average precision (AP) of 0.9019 for ripe strawberries and 0.8447 for immature ones, with a mean average precision (mAP) of 0.8733. The counting accuracy for ripe and immature strawberries was 99.1% and 73.7% respectively. The method presented in this work exhibits strong detection and counting capabilities, suitable for automatic monitoring, harvesting, and yield estimation of strawberries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助JXDeng采纳,获得10
1秒前
1秒前
Niejianjie发布了新的文献求助10
3秒前
章鱼哥想毕业完成签到 ,获得积分10
4秒前
offshore完成签到 ,获得积分10
5秒前
思源应助曾梦采纳,获得10
5秒前
wanci应助段段采纳,获得10
5秒前
6秒前
6秒前
7秒前
俊逸芸遥发布了新的文献求助10
8秒前
10秒前
哆啦η梦发布了新的文献求助10
10秒前
陈汭希发布了新的文献求助20
11秒前
11秒前
shirelylee发布了新的文献求助10
12秒前
zzh319发布了新的文献求助10
12秒前
JXDeng完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
煎饼完成签到,获得积分10
16秒前
JXDeng发布了新的文献求助10
17秒前
17秒前
都找到了完成签到,获得积分10
17秒前
曾梦发布了新的文献求助10
18秒前
19秒前
煎饼发布了新的文献求助10
19秒前
19秒前
所所应助小沈采纳,获得10
20秒前
Emily发布了新的文献求助30
20秒前
潇洒诗槐发布了新的文献求助30
21秒前
iii发布了新的文献求助10
22秒前
22秒前
普外科老白完成签到,获得积分10
22秒前
23秒前
所有的雨关注了科研通微信公众号
23秒前
Xxi发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590370
求助须知:如何正确求助?哪些是违规求助? 3158661
关于积分的说明 9521041
捐赠科研通 2861726
什么是DOI,文献DOI怎么找? 1572746
邀请新用户注册赠送积分活动 738102
科研通“疑难数据库(出版商)”最低求助积分说明 722676