Development and Validation of a Machine Learning Prediction Model of Posttraumatic Stress Disorder After Military Deployment

软件部署 队列 创伤后应激 心理学 军事部署 接收机工作特性 医学 临床心理学 机器学习 计算机科学 内科学 操作系统
作者
Santiago Papini,Sonya B. Norman,Laura Campbell‐Sills,Xiaoying Sun,Feng He,Ronald C. Kessler,Robert J. Ursano,Sonia Jain,Murray B. Stein
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (6): e2321273-e2321273 被引量:7
标识
DOI:10.1001/jamanetworkopen.2023.21273
摘要

Importance Military deployment involves significant risk for life-threatening experiences that can lead to posttraumatic stress disorder (PTSD). Accurate predeployment prediction of PTSD risk may facilitate the development of targeted intervention strategies to enhance resilience. Objective To develop and validate a machine learning (ML) model to predict postdeployment PTSD. Design, Setting, and Participants This diagnostic/prognostic study included 4771 soldiers from 3 US Army brigade combat teams who completed assessments between January 9, 2012, and May 1, 2014. Predeployment assessments occurred 1 to 2 months before deployment to Afghanistan, and follow-up assessments occurred approximately 3 and 9 months post deployment. Machine learning models to predict postdeployment PTSD were developed in the first 2 recruited cohorts using as many as 801 predeployment predictors from comprehensive self-report assessments. In the development phase, cross-validated performance metrics and predictor parsimony were considered to select an optimal model. Next, the selected model’s performance was evaluated with area under the receiver operating characteristics curve and expected calibration error in a temporally and geographically distinct cohort. Data analyses were performed from August 1 to November 30, 2022. Main Outcomes and Measures Posttraumatic stress disorder diagnosis was assessed by clinically calibrated self-report measures. Participants were weighted in all analyses to address potential biases related to cohort selection and follow-up nonresponse. Results This study included 4771 participants (mean [SD] age, 26.9 [6.2] years), 4440 (94.7%) of whom were men. In terms of race and ethnicity, 144 participants (2.8%) identified as American Indian or Alaska Native, 242 (4.8%) as Asian, 556 (13.3%) as Black or African American, 885 (18.3%) as Hispanic, 106 (2.1%) as Native Hawaiian or other Pacific Islander, 3474 (72.2%) as White, and 430 (8.9%) as other or unknown race or ethnicity; participants could identify as of more than 1 race or ethnicity. A total of 746 participants (15.4%) met PTSD criteria post deployment. In the development phase, models had comparable performance (log loss range, 0.372-0.375; area under the curve range, 0.75-0.76). A gradient-boosting machine with 58 core predictors was selected over an elastic net with 196 predictors and a stacked ensemble of ML models with 801 predictors. In the independent test cohort, the gradient-boosting machine had an area under the curve of 0.74 (95% CI, 0.71-0.77) and low expected calibration error of 0.032 (95% CI, 0.020-0.046). Approximately one-third of participants with the highest risk accounted for 62.4% (95% CI, 56.5%-67.9%) of the PTSD cases. Core predictors cut across 17 distinct domains: stressful experiences, social network, substance use, childhood or adolescence, unit experiences, health, injuries, irritability or anger, personality, emotional problems, resilience, treatment, anxiety, attention or concentration, family history, mood, and religion. Conclusions and Relevance In this diagnostic/prognostic study of US Army soldiers, an ML model was developed to predict postdeployment PTSD risk with self-reported information collected before deployment. The optimal model showed good performance in a temporally and geographically distinct validation sample. These results indicate that predeployment stratification of PTSD risk is feasible and may facilitate the development of targeted prevention and early intervention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到 ,获得积分10
刚刚
张国柱完成签到,获得积分10
刚刚
潇潇完成签到 ,获得积分10
刚刚
刚刚
路瑶瑶完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
tracer完成签到,获得积分10
2秒前
mhy完成签到 ,获得积分10
2秒前
欣欣发布了新的文献求助10
2秒前
花生酱发布了新的文献求助10
2秒前
dj完成签到,获得积分10
2秒前
2秒前
4秒前
田様应助诚心靳采纳,获得10
5秒前
NexusExplorer应助董晏殊采纳,获得10
5秒前
爱因斯宣发布了新的文献求助10
5秒前
李健的小迷弟应助lenon采纳,获得10
5秒前
5秒前
桐桐应助张文静采纳,获得30
6秒前
6秒前
金不换发布了新的文献求助10
6秒前
Grace完成签到,获得积分10
6秒前
苏氨酸发布了新的文献求助10
6秒前
明亮的绫发布了新的文献求助10
6秒前
赘婿应助yier采纳,获得10
7秒前
7秒前
kyleaa发布了新的文献求助10
7秒前
bey发布了新的文献求助10
7秒前
小飞飞完成签到,获得积分10
8秒前
8秒前
伊戈达拉一个大拉完成签到,获得积分10
9秒前
niat发布了新的文献求助10
9秒前
9秒前
卡卡123发布了新的文献求助10
10秒前
轻松的惜芹应助苦哈哈采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650