Machine learning-based identification of segment joint failure in underground tunnels

结算(财务) 变形(气象学) 结构工程 刚度 接头(建筑物) 人工神经网络 鉴定(生物学) 计算机科学 位错 岩土工程 地质学 土木工程 工程类 人工智能 材料科学 海洋学 植物 复合材料 万维网 付款 生物
作者
Z. L. Jin,Zihai Yan,Haoran Fu,Xuecheng Bian
出处
期刊:Philosophical Transactions of the Royal Society A [The Royal Society]
卷期号:381 (2254) 被引量:4
标识
DOI:10.1098/rsta.2022.0170
摘要

Shield tunnels that reside deep within soft soil are subject to longitudinal differential settlement and structural deformation during long-term operation. Longitudinal deformation can be classified into two modes: bending and dislocation deformation. The failure of bolts and engineering treatment techniques differ between these two modes. Therefore, it is imperative to accurately identify the tunnel's longitudinal deformation mode to determine the validity of the segment joint and implement appropriate engineering treatment. Traditional methods for detecting dislocation or opening suffer from high labour costs. To address this issue, this study presents an innovative identification method using a back-propagation neural network (BPNN) to detect segment joint failure in underground tunnels. First, this study collects the tunnel settlement curves of various subways located in the East China soft soil area, and it calculates tunnel settlement-dislocation and settlement-opening datasets using the equivalent axial stiffness model. A corresponding BPNN regression model is subsequently established, and the new settlement curve is the input to this regression model to predict the dislocation and opening, thereby determining the validity of the segment joint. The efficiency of this method is demonstrated through its successful application to the Hangzhou Metro Tunnel. This article is part of the theme issue 'Artificial intelligence in failure analysis of transportation infrastructure and materials'.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酶没美镁完成签到,获得积分10
刚刚
小二郎应助Rui采纳,获得10
刚刚
Libra完成签到,获得积分10
1秒前
雪儿发布了新的文献求助30
1秒前
无悔呀发布了新的文献求助10
1秒前
小巧的可仁完成签到 ,获得积分10
1秒前
1秒前
zhao完成签到,获得积分10
2秒前
masu发布了新的文献求助10
2秒前
冷酷尔琴发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
3秒前
优雅山柏完成签到,获得积分10
3秒前
XinyiZhang发布了新的文献求助10
3秒前
小蘑菇应助yangyang采纳,获得10
3秒前
慕青应助欢欢采纳,获得10
4秒前
小憩完成签到,获得积分10
4秒前
南乔发布了新的文献求助10
4秒前
张静静发布了新的文献求助10
5秒前
云儿完成签到,获得积分10
5秒前
淡淡的洋葱完成签到,获得积分10
5秒前
小洲王先生完成签到,获得积分10
6秒前
6秒前
dd完成签到,获得积分10
6秒前
6秒前
7秒前
CCL应助kk2024采纳,获得50
7秒前
wjs0406完成签到,获得积分10
7秒前
自爱悠然发布了新的文献求助10
7秒前
贺雪完成签到,获得积分10
8秒前
8秒前
玉yu发布了新的文献求助10
9秒前
深情秋刀鱼完成签到,获得积分10
9秒前
星辰大海应助冷酷尔琴采纳,获得10
9秒前
9秒前
9秒前
隐形的大有完成签到,获得积分10
10秒前
浩浩大人发布了新的文献求助10
10秒前
buno应助圈圈采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740