A novel variational approach for multiphoton microscopy image restoration: from PSF estimation to 3D deconvolution

去模糊 反褶积 点扩散函数 图像复原 显微镜 反问题 计算机科学 算法 人工智能 噪音(视频) 计算机视觉 图像处理 数学 光学 物理 图像(数学) 数学分析
作者
Julien Ajdenbaum,Émilie Chouzenoux,Claire Lefort,Ségolène Martin,Jean‐Christophe Pesquet
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:40 (6): 065003-065003 被引量:1
标识
DOI:10.1088/1361-6420/ad3c67
摘要

Abstract In multi-photon microscopy (MPM), a recent in-vivo fluorescence microscopy system, the task of image restoration can be decomposed into two interlinked inverse problems: firstly, the characterization of the point spread function (PSF) and subsequently, the deconvolution (i.e. deblurring) to remove the PSF effect, and reduce noise. The acquired MPM image quality is critically affected by PSF blurring and intense noise. The PSF in MPM is highly spread in 3D and is not well characterized, presenting high variability with respect to the observed objects. This makes the restoration of MPM images challenging. Common PSF estimation methods in fluorescence microscopy, including MPM, involve capturing images of sub-resolution beads, followed by quantifying the resulting ellipsoidal 3D spot. In this work, we revisit this approach, coping with its inherent limitations in terms of accuracy and practicality. We estimate the PSF from the observation of relatively large beads (approximately 1 μ m in diameter). This goes through the formulation and resolution of an original non-convex minimization problem, for which we propose a proximal alternating method along with convergence guarantees. Following the PSF estimation step, we then introduce an innovative strategy to deal with the high level multiplicative noise degrading the acquisitions. We rely on a heteroscedastic noise model for which we estimate the parameters. We then solve a constrained optimization problem to restore the image, accounting for the estimated PSF and noise, while allowing a minimal hyper-parameter tuning. Theoretical guarantees are given for the restoration algorithm. These algorithmic contributions lead to an end-to-end pipeline for 3D image restoration in MPM, that we share as a publicly available Python software. We demonstrate its effectiveness through several experiments on both simulated and real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
7秒前
majuanwei发布了新的文献求助10
8秒前
9秒前
听枫发布了新的文献求助10
9秒前
细心书蕾完成签到 ,获得积分10
9秒前
bkagyin应助哼哼今采纳,获得10
10秒前
健壮台灯完成签到,获得积分10
10秒前
momo发布了新的文献求助10
10秒前
科研通AI2S应助丰富傥采纳,获得10
10秒前
binz完成签到,获得积分10
11秒前
11秒前
嗯哼应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
14秒前
Umar发布了新的文献求助10
15秒前
中国居里完成签到 ,获得积分10
16秒前
16秒前
前程似锦的中国文明完成签到,获得积分10
17秒前
俭朴的跳跳糖完成签到 ,获得积分10
17秒前
彭于晏应助feifei采纳,获得10
18秒前
18秒前
naturewar完成签到,获得积分10
20秒前
22秒前
guochang完成签到,获得积分10
26秒前
LeimingDai发布了新的文献求助10
26秒前
共享精神应助goddd采纳,获得10
28秒前
29秒前
33完成签到,获得积分10
29秒前
29秒前
gyro完成签到,获得积分10
29秒前
31秒前
科研通AI2S应助吕咏孜采纳,获得10
31秒前
32秒前
123发布了新的文献求助10
32秒前
莫离发布了新的文献求助10
33秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378619
求助须知:如何正确求助?哪些是违规求助? 2994131
关于积分的说明 8758014
捐赠科研通 2678698
什么是DOI,文献DOI怎么找? 1467343
科研通“疑难数据库(出版商)”最低求助积分说明 678640
邀请新用户注册赠送积分活动 670229