Multi-lead-time short-term runoff forecasting based on Ensemble Attention Temporal Convolutional Network

计算机科学 稳健性(进化) 人工智能 快照(计算机存储) 机器学习 深度学习 计算 数据挖掘 算法 数据库 生物化学 化学 基因
作者
Chunxiao Zhang,Ziyu Sheng,Chunlei Zhang,Shiping Wen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:243: 122935-122935 被引量:11
标识
DOI:10.1016/j.eswa.2023.122935
摘要

In the realm of ecological management and human activities within river basins, short-term runoff forecasting plays a pivotal role. Addressing this need, this paper introduces an innovative framework for short-term runoff forecasting: the Ensemble Attention Temporal Convolutional Network (EA-TCN). The cornerstone of this innovation lies in the effective amalgamation of Temporal Convolutional Network (TCN), lightweight attention mechanism, and ensemble learning strategy. This integration synergistically enhances the model’s overall performance in terms of accuracy, efficiency, and robustness. TCN forms the foundation of this framework, where its efficient architecture, characterized by shared parameters and parallel computation, significantly boosts computational efficiency. Its employment of causal and dilated convolutions adeptly captures long-term dependencies within time series inputs. The incorporated lightweight attention mechanism further augments the TCN, enabling EA-TCN to precisely discern complex relationship in temporal data, particularly exhibiting remarkable temporal robustness across various forecasting horizons—a feat challenging for conventional forecasting approaches. Additionally, the integration of the Snapshot ensemble method within the framework allows for simulating the effect of training multiple models through one single training process, thus further elevating the model’s accuracy and robustness. Rigorous ablation and comparative experiments conducted on the US Columbia River dataset substantiate our claims. The results not only validate the individual merits of each component within EA-TCN but also illuminate the significant advantages of their collective application. Our comprehensive assessment unequivocally demonstrates the framework’s exceptional performance in short-term runoff forecasting, positioning it as a state-of-the-art solution in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助海夜采纳,获得10
1秒前
simon发布了新的文献求助10
1秒前
bonnie发布了新的文献求助10
1秒前
jiujiujiujiu完成签到,获得积分10
1秒前
1秒前
2秒前
Fairy完成签到,获得积分10
2秒前
wwewew完成签到,获得积分10
2秒前
竹子完成签到,获得积分10
2秒前
594zqz完成签到,获得积分10
4秒前
英俊的胜完成签到,获得积分10
4秒前
王洋洋完成签到,获得积分10
4秒前
Nangong完成签到,获得积分10
5秒前
pl656完成签到,获得积分10
5秒前
FashionBoy应助sss采纳,获得10
6秒前
w7完成签到,获得积分10
6秒前
Hina发布了新的文献求助10
6秒前
6秒前
888完成签到 ,获得积分10
7秒前
领导范儿应助吕健采纳,获得10
7秒前
轻舟完成签到 ,获得积分10
7秒前
西梅完成签到,获得积分20
7秒前
听雨完成签到 ,获得积分10
8秒前
不上课不行完成签到,获得积分10
8秒前
syiimo完成签到 ,获得积分10
8秒前
Silence完成签到 ,获得积分10
8秒前
隐形曼青应助王洋洋采纳,获得10
8秒前
NexusExplorer应助巧克力采纳,获得10
9秒前
朔月完成签到,获得积分10
9秒前
852应助杨烨华采纳,获得10
10秒前
10秒前
哈先森完成签到,获得积分10
10秒前
11秒前
wuta完成签到,获得积分10
11秒前
lli完成签到,获得积分10
11秒前
11秒前
丰富的小猫咪完成签到,获得积分10
12秒前
12秒前
12秒前
Nangong发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953623
求助须知:如何正确求助?哪些是违规求助? 3499390
关于积分的说明 11095224
捐赠科研通 3229945
什么是DOI,文献DOI怎么找? 1785807
邀请新用户注册赠送积分活动 869573
科研通“疑难数据库(出版商)”最低求助积分说明 801479