Multi-lead-time short-term runoff forecasting based on Ensemble Attention Temporal Convolutional Network

计算机科学 稳健性(进化) 人工智能 快照(计算机存储) 机器学习 深度学习 计算 数据挖掘 算法 数据库 生物化学 化学 基因
作者
Chunxiao Zhang,Ziyu Sheng,Chunlei Zhang,Shiping Wen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:243: 122935-122935 被引量:11
标识
DOI:10.1016/j.eswa.2023.122935
摘要

In the realm of ecological management and human activities within river basins, short-term runoff forecasting plays a pivotal role. Addressing this need, this paper introduces an innovative framework for short-term runoff forecasting: the Ensemble Attention Temporal Convolutional Network (EA-TCN). The cornerstone of this innovation lies in the effective amalgamation of Temporal Convolutional Network (TCN), lightweight attention mechanism, and ensemble learning strategy. This integration synergistically enhances the model’s overall performance in terms of accuracy, efficiency, and robustness. TCN forms the foundation of this framework, where its efficient architecture, characterized by shared parameters and parallel computation, significantly boosts computational efficiency. Its employment of causal and dilated convolutions adeptly captures long-term dependencies within time series inputs. The incorporated lightweight attention mechanism further augments the TCN, enabling EA-TCN to precisely discern complex relationship in temporal data, particularly exhibiting remarkable temporal robustness across various forecasting horizons—a feat challenging for conventional forecasting approaches. Additionally, the integration of the Snapshot ensemble method within the framework allows for simulating the effect of training multiple models through one single training process, thus further elevating the model’s accuracy and robustness. Rigorous ablation and comparative experiments conducted on the US Columbia River dataset substantiate our claims. The results not only validate the individual merits of each component within EA-TCN but also illuminate the significant advantages of their collective application. Our comprehensive assessment unequivocally demonstrates the framework’s exceptional performance in short-term runoff forecasting, positioning it as a state-of-the-art solution in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助海贼学术采纳,获得10
刚刚
刚刚
1秒前
冯不言完成签到,获得积分10
3秒前
赵鹏完成签到,获得积分10
3秒前
Hilda007应助泡面小分队采纳,获得10
4秒前
cloudy完成签到,获得积分20
4秒前
4秒前
HU完成签到 ,获得积分10
5秒前
滴滴发布了新的文献求助10
5秒前
领导范儿应助12123浪采纳,获得10
5秒前
6秒前
Zhu发布了新的文献求助10
6秒前
Zp完成签到,获得积分10
7秒前
Andy完成签到,获得积分10
9秒前
南城忆潇湘完成签到,获得积分10
9秒前
华仔应助Zhu采纳,获得10
11秒前
12秒前
13秒前
13秒前
开心丸子完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
liss发布了新的文献求助10
17秒前
忧郁的莫茗完成签到,获得积分10
17秒前
18秒前
小小的梦想完成签到,获得积分10
18秒前
小透明完成签到,获得积分0
18秒前
18秒前
20秒前
烟花应助王王牛奶采纳,获得10
20秒前
Stone完成签到,获得积分10
20秒前
丘比特应助yl-h采纳,获得10
20秒前
仁爱雪晴发布了新的文献求助10
21秒前
cloudy关注了科研通微信公众号
21秒前
22秒前
23秒前
我是老大应助轻松苠采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297579
求助须知:如何正确求助?哪些是违规求助? 4446407
关于积分的说明 13839369
捐赠科研通 4331573
什么是DOI,文献DOI怎么找? 2377767
邀请新用户注册赠送积分活动 1373035
关于科研通互助平台的介绍 1338563