健康档案
非结构化数据
病历
计算机科学
电子健康档案
电子病历
数据科学
人工智能
医学
自然语言处理
机器学习
数据挖掘
医疗急救
医疗保健
大数据
放射科
经济
经济增长
作者
Jin‐ah Sim,Xiaolei Huang,Madeline R. Horan,Justin N. Baker,I‐Chan Huang
标识
DOI:10.1080/14737167.2024.2322664
摘要
Introduction Patient-reported outcomes (PROs; symptoms, functional status, quality-of-life) expressed in the 'free-text' or 'unstructured' format within clinical notes from electronic health records (EHRs) offer valuable insights beyond biological and clinical data for medical decision-making. However, the comprehensive assessment for utilizing natural language processing (NLP) coupled with machine learning (ML) methods to analyze unstructured PROs and their clinical implementation for individuals affected by cancer remains lacking.
科研通智能强力驱动
Strongly Powered by AbleSci AI