Interpretable multi-view attention network for drug-drug interaction prediction

计算机科学 编码器 图形 人工智能 机器学习 注意力网络 理论计算机科学 操作系统
作者
Xuan Lin,Wen Qi,Sijie Yang,Zu‐Guo Yu,Yahui Long,Xiangxiang Zeng
标识
DOI:10.1109/bibm58861.2023.10385757
摘要

Drug-drug interaction (DDI) plays an increasingly crucial role in drug discovery. Predicting potential DDI is also essential for clinical research. Given the high cost and risk of wet-lab experiments, in-silico DDI prediction is an alternative choice. Recently, deep learning methods have been developed for DDI prediction. However, most of existing methods focus on feature extraction from either molecular SMILES sequences or drug interactive networks, ignoring the valuable complementary information that can be derived from these two views. In this paper, we propose a novel interpretable Multi-View Attention network (MVA-DDI) for DDI prediction. MVA-DDI can effectively extracts drug representations from different perspectives to improve DDI prediction. Specifically, for a given drug, we design a transformer-based encoder and a graph convolutional networkbased encoder to learn sequence and graph representations from SMILES sequence and molecular graph, respectively. To fully exploit the complementary information between the sequence and molecular views, an attention mechanism is further adopted to adaptively aggregate the sequence and graph representations by taking the importance of different views into accounts, generating the final drug representations. Comparison experiments demonstrated that our MVA-DDI 1 model achieved superior performance to state-of-the-art models on DDI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
Unfair发布了新的文献求助10
5秒前
小明同学完成签到,获得积分10
5秒前
科研通AI6应助陶醉寒蕾采纳,获得10
6秒前
群山发布了新的文献求助10
6秒前
luojimao发布了新的文献求助10
6秒前
于凡完成签到,获得积分10
7秒前
完美世界应助精明的信封采纳,获得10
7秒前
8秒前
8秒前
汉堡包应助风清扬采纳,获得10
9秒前
9秒前
11秒前
wtf52018完成签到,获得积分10
12秒前
13秒前
chlc6973完成签到,获得积分10
14秒前
耶耶耶发布了新的文献求助50
14秒前
14秒前
15秒前
15秒前
Source发布了新的文献求助10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
暗月青影应助科研通管家采纳,获得10
16秒前
鸣笛应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
浮游应助ikun采纳,获得10
17秒前
17秒前
17秒前
Q_Q发布了新的文献求助10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601124
求助须知:如何正确求助?哪些是违规求助? 4010920
关于积分的说明 12418075
捐赠科研通 3690904
什么是DOI,文献DOI怎么找? 2034732
邀请新用户注册赠送积分活动 1068013
科研通“疑难数据库(出版商)”最低求助积分说明 952626