Interpretable multi-view attention network for drug-drug interaction prediction

计算机科学 编码器 图形 人工智能 机器学习 注意力网络 理论计算机科学 操作系统
作者
Xuan Lin,Wen Qi,Sijie Yang,Zu‐Guo Yu,Yahui Long,Xiangxiang Zeng
标识
DOI:10.1109/bibm58861.2023.10385757
摘要

Drug-drug interaction (DDI) plays an increasingly crucial role in drug discovery. Predicting potential DDI is also essential for clinical research. Given the high cost and risk of wet-lab experiments, in-silico DDI prediction is an alternative choice. Recently, deep learning methods have been developed for DDI prediction. However, most of existing methods focus on feature extraction from either molecular SMILES sequences or drug interactive networks, ignoring the valuable complementary information that can be derived from these two views. In this paper, we propose a novel interpretable Multi-View Attention network (MVA-DDI) for DDI prediction. MVA-DDI can effectively extracts drug representations from different perspectives to improve DDI prediction. Specifically, for a given drug, we design a transformer-based encoder and a graph convolutional networkbased encoder to learn sequence and graph representations from SMILES sequence and molecular graph, respectively. To fully exploit the complementary information between the sequence and molecular views, an attention mechanism is further adopted to adaptively aggregate the sequence and graph representations by taking the importance of different views into accounts, generating the final drug representations. Comparison experiments demonstrated that our MVA-DDI 1 model achieved superior performance to state-of-the-art models on DDI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sean发布了新的文献求助10
刚刚
Anna完成签到,获得积分10
1秒前
1秒前
hhh2018687完成签到,获得积分10
3秒前
3秒前
斯文败类应助勤奋夏兰采纳,获得10
3秒前
4秒前
5秒前
她说戴了不算给完成签到,获得积分10
5秒前
5秒前
所所应助粉红大叔采纳,获得10
6秒前
无私剑封完成签到,获得积分10
6秒前
7秒前
7秒前
诡瞳GT完成签到 ,获得积分10
8秒前
xxhh完成签到,获得积分20
9秒前
王小嘻发布了新的文献求助10
9秒前
10秒前
11秒前
田様应助正直依风采纳,获得10
11秒前
12秒前
12秒前
llllllll发布了新的文献求助10
13秒前
13秒前
wym完成签到,获得积分10
13秒前
共享精神应助刘刘佳采纳,获得10
13秒前
英俊的铭应助WELL123采纳,获得10
13秒前
小可爱发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助150
14秒前
lucky完成签到 ,获得积分20
14秒前
奋斗遥完成签到,获得积分20
15秒前
大方明杰发布了新的文献求助10
16秒前
16秒前
17秒前
SciGPT应助王珂采纳,获得10
17秒前
昏迷树袋熊完成签到,获得积分10
17秒前
chen发布了新的文献求助10
17秒前
清爽老九发布了新的文献求助10
18秒前
zz发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158544
求助须知:如何正确求助?哪些是违规求助? 4353320
关于积分的说明 13554829
捐赠科研通 4196776
什么是DOI,文献DOI怎么找? 2301806
邀请新用户注册赠送积分活动 1301655
关于科研通互助平台的介绍 1246794