Engineering Vascular Bioreactor Systems to Closely Mimic Physiological Forces In Vitro

生物反应器 脚手架 组织工程 生化工程 剪应力 复制 计算机科学 生物 生物医学工程 细胞生物学 纳米技术 计算生物学 生物系统 工程类 材料科学 统计 复合材料 植物 数学
作者
Timothy C. Mitchell,Nicolas Feng,Yuen Ting Lam,Praveesuda Michael,Miguel Santos,Steven G. Wise
出处
期刊:Tissue Engineering Part B-reviews [Mary Ann Liebert]
卷期号:29 (3): 232-243 被引量:3
标识
DOI:10.1089/ten.teb.2022.0158
摘要

In vitro models of the vasculature play an important role in biomedical discovery research, with diverse applications in vascular biology, drug discovery, and tissue engineering. These models aim to replicate the conditions of the human vasculature including physical geometry, employing appropriate vascular cells exposed to physiological forces. However, vessel biology is complex, with multiple relevant cell types, precise three-dimensional (3D) architectural arrangement, an array of biological cues and pressure, flow rate, and shear stress stimulation that are difficult to replicate outside of the body. Vessel bioreactors typically comprise core modules, common to most systems: a 3D tubular scaffold to support cells, media and nutrient exchange for cell viability, a pumping module, and sensor arrays for monitoring. In our comprehensive review of the literature, foundational elements such as maintenance of cell viability, nutrient exchange with flow, use of 3D scaffolds, and basic sensing capabilities are well established. However, most bioreactor systems fail to adequately replicate combinations of physiologically relevant stimuli—including pressure, shear stress, and flow rate—independently, as system input parameters. At the root of this deficiency is the field's reliance on simple pumping systems designed for other applications, making it necessary to add resistors and compliance chambers to even approach human vascular conditions. As vascular biology research rapidly progressed it became increasingly clear that combinations of physical forces strongly influence cell phenotype, gene expression, and in turn can be drivers of pathology. We highlight the need for renewed innovation in vascular bioreactor development with a focus on the importance of providing appropriate physiological forces in the same system. In vitro systems modeling aspects of the human vasculature are increasingly important in tissue engineering and biomedical research. Current systems maintain basic cell viability and facilitate nutrient exchange but poorly replicate physiological forces, reliant on simplistic pumping systems. Our review highlights the need to more accurately mimic arterial pressure, flow rate, and shear stress in the same system. Innovation in this area would improve in vitro modeling of the vasculature, significantly impacting tissue engineering and vascular biology in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkdajsk发布了新的文献求助10
1秒前
2秒前
安静落雁发布了新的文献求助10
3秒前
7秒前
WongGingYong发布了新的文献求助10
8秒前
11秒前
高高哑铃发布了新的文献求助10
11秒前
等待的靖雁完成签到,获得积分10
12秒前
小莫完成签到 ,获得积分10
13秒前
kk发布了新的文献求助10
14秒前
枪手发布了新的文献求助10
14秒前
封迎松发布了新的文献求助30
17秒前
17秒前
18秒前
18秒前
深情安青应助jkdajsk采纳,获得10
19秒前
20秒前
月不笑发布了新的文献求助10
21秒前
上官若男应助白色杏林糖采纳,获得50
21秒前
tina3058发布了新的文献求助10
22秒前
kk完成签到,获得积分10
22秒前
zhouzhou完成签到 ,获得积分10
22秒前
li发布了新的文献求助30
23秒前
畅快的刚完成签到,获得积分10
24秒前
li锂狸应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得30
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
24秒前
英姑应助科研通管家采纳,获得20
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
Akim应助科研通管家采纳,获得10
24秒前
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316075
求助须知:如何正确求助?哪些是违规求助? 2947746
关于积分的说明 8538365
捐赠科研通 2623822
什么是DOI,文献DOI怎么找? 1435519
科研通“疑难数据库(出版商)”最低求助积分说明 665613
邀请新用户注册赠送积分活动 651457