亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeLiGAN: Generative Adversarial Networks for Diverse and Limited Data

计算机科学 生成语法 班级(哲学) 人工智能 多样性(控制论) 对抗制 图像(数学) 模态(人机交互) 空格(标点符号) 模式识别(心理学) 简单(哲学) 生成对抗网络 生成模型 度量(数据仓库) 机器学习 数据挖掘 哲学 操作系统 认识论
作者
Swaminathan Gurumurthy,Ravi Kiran Sarvadevabhatla,R. Venkatesh Babu
标识
DOI:10.1109/cvpr.2017.525
摘要

A class of recent approaches for generating images, called Generative Adversarial Networks (GAN), have been used to generate impressively realistic images of objects, bedrooms, handwritten digits and a variety of other image modalities. However, typical GAN-based approaches require large amounts of training data to capture the diversity across the image modality. In this paper, we propose DeLiGAN - a novel GAN-based architecture for diverse and limited training data scenarios. In our approach, we reparameterize the latent generative space as a mixture model and learn the mixture models parameters along with those of GAN. This seemingly simple modification to the GAN framework is surprisingly effective and results in models which enable diversity in generated samples although trained with limited data. In our work, we show that DeLiGAN can generate images of handwritten digits, objects and hand-drawn sketches, all using limited amounts of data. To quantitatively characterize intra-class diversity of generated samples, we also introduce a modified version of inception-score, a measure which has been found to correlate well with human assessment of generated samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
13秒前
月亮完成签到,获得积分10
13秒前
15秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得20
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
23秒前
在水一方应助7_2U1采纳,获得10
28秒前
菠萝炒饭不要辣椒完成签到,获得积分10
32秒前
桐桐应助无情的琳采纳,获得10
55秒前
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
1分钟前
2分钟前
CAOHOU应助路漫漫其修远兮采纳,获得10
2分钟前
松林揽月发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Jasper应助路漫漫其修远兮采纳,获得10
2分钟前
万能图书馆应助愿景采纳,获得10
2分钟前
桐桐应助Wei采纳,获得10
2分钟前
2分钟前
7_2U1发布了新的文献求助10
2分钟前
2分钟前
7_2U1完成签到,获得积分20
2分钟前
3分钟前
3分钟前
Panther完成签到,获得积分10
3分钟前
3分钟前
RE完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助30
3分钟前
paannqi完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401