儿茶酚
材料科学
化学
高分子科学
有机化学
高分子化学
标识
DOI:10.1002/anie.202000848
摘要
Abstract The incorporation of comonomers during ethylene polymerization can efficiently modulate important material properties of the polyolefins. Utilizing bioresourced comonomers for the generation of high‐performance polyolefin materials is attractive from a sustainability point of view. In this contribution, bioresourced eugenol and related comonomers were incorporated into polyolefins through palladium‐catalyzed copolymerization and terpolymerization reactions. Importantly, high‐molecular‐weight catechol‐functionalized polyolefins can be generated. The introduction of different metal ions induces efficient interactions with the incorporated catechol groups, leading to enhanced mechanical properties and self‐healing properties. Moreover, the catechol functionality can greatly improve other properties such as surface properties, adhesion properties, and compatibilizing properties. The catechol‐functionalized polyolefin was demonstrated as a versatile platform polymer for accessing various materials with dramatically different properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI