Progress in 3D bioprinting technology for tissue/organ regenerative engineering

生物加工 再生医学 3D生物打印 组织工程 再生(生物学) 经济短缺 生物医学工程 计算机科学 干细胞 材料科学 纳米技术 细胞生物学 工程类 生物 哲学 遗传学 语言学 政府(语言学)
作者
Ishita Matai,Gurvinder Kaur,Amir Seyedsalehi,Aneesah McClinton,Cato T. Laurencin
出处
期刊:Biomaterials [Elsevier]
卷期号:226: 119536-119536 被引量:821
标识
DOI:10.1016/j.biomaterials.2019.119536
摘要

Escalating cases of organ shortage and donor scarcity worldwide are alarming reminders of the need for alternatives to allograft tissues. Within the last three decades, research efforts in the field of regenerative medicine and tissue engineering continue to address the unmet need for artificial tissues and organs for transplant. Work in the field has evolved to create what we consider a new field, Regenerative Engineering, defined as the Convergence of advanced materials science, stem cell science, physics, developmental biology and clinical translation towards the regeneration of complex tissues and organ systems. Included in the regenerative engineering paradigm is advanced manufacturing. Three-dimensional (3D) bioprinting is a promising and innovative biofabrication strategy to precisely position biologics, including living cells and extracellular matrix (ECM) components, in the prescribed 3D hierarchal organization to create artificial multi-cellular tissues/organs. In this review, we outline recent progress in several bioprinting technologies used to engineer scaffolds with requisite mechanical, structural, and biological complexity. We examine the process parameters affecting bioprinting and bioink-biomaterials and review notable studies on bioprinted skin, cardiac, bone, cartilage, liver, lung, neural, and pancreatic tissue. We also focus on other 3D bioprinting application areas including cancer research, drug testing, high-throughput screening (HTS), and organ-on-a-chip models. We also highlight the current challenges associated with the clinical translation of 3D bioprinting and conclude with the future perspective of bioprinting technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mr_Hao完成签到,获得积分10
1秒前
GGGrigor完成签到,获得积分10
2秒前
3秒前
mz完成签到 ,获得积分10
3秒前
孙文远发布了新的文献求助10
4秒前
唐擎汉完成签到,获得积分10
4秒前
Lord完美发布了新的文献求助10
4秒前
6秒前
7秒前
9秒前
QQWQEQRQ发布了新的文献求助10
10秒前
stay完成签到,获得积分20
10秒前
10秒前
鹏程万里完成签到,获得积分10
10秒前
Akim应助魏小梅采纳,获得10
11秒前
孙文远完成签到,获得积分10
12秒前
草莓奶昔完成签到 ,获得积分10
13秒前
stay发布了新的文献求助10
13秒前
atlas wu发布了新的文献求助10
13秒前
Lord完美完成签到,获得积分10
15秒前
16秒前
丰知然应助QQWQEQRQ采纳,获得10
18秒前
怕孤独的鹭洋完成签到,获得积分10
19秒前
英俊的铭应助慕容友梅采纳,获得10
20秒前
完美世界应助垚祎采纳,获得10
22秒前
22秒前
sunzhou2008完成签到,获得积分10
23秒前
Orange应助多边形采纳,获得10
24秒前
24秒前
上官若男应助研友_nv2R5n采纳,获得10
25秒前
搜集达人应助Gu采纳,获得10
25秒前
ding应助FG采纳,获得10
26秒前
等效边界发布了新的文献求助10
27秒前
jinshijie发布了新的文献求助10
28秒前
负责的寒梅完成签到 ,获得积分10
29秒前
Ava应助大狒狒采纳,获得10
30秒前
33秒前
逃不了发布了新的文献求助10
33秒前
34秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295440
求助须知:如何正确求助?哪些是违规求助? 2931526
关于积分的说明 8452371
捐赠科研通 2604090
什么是DOI,文献DOI怎么找? 1421500
科研通“疑难数据库(出版商)”最低求助积分说明 660955
邀请新用户注册赠送积分活动 643950