Cloud–Edge-Based Lightweight Temporal Convolutional Networks for Remaining Useful Life Prediction in IIoT

云计算 计算机科学 边缘计算 大数据 GSM演进的增强数据速率 工业互联网 边缘设备 人工智能 领域(数学) 分布式计算 物联网 数据挖掘 计算机安全 数学 操作系统 纯数学
作者
Lei Ren,Yuxin Liu,Xiaokang Wang,Jinhu Lü,M. Jamal Deen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (16): 12578-12587 被引量:101
标识
DOI:10.1109/jiot.2020.3008170
摘要

Industrial Internet of Things (IIoT), as an important industrial branch of the Internet of Things (IoT), has an essential purpose to improve intelligent industrial production. For this purpose, IIoT big data should be efficiently processed to mine valuable information. In handing the IIoT big data, cloud-edge computing is getting more attention to reduce the interaction latency to meet the real-time requirement, especially in the field of prognostic and health management (PHM). It is expected that artificial intelligence (AI) technologies will significantly change the manner of processing IIoT big data. Therefore, new methods about PHM, combining cloud-edge computing with AI technologies, are required to process the IIoT big data for intelligent industrial manufacturing. As an essential element of PHM, predicting the remaining useful life (RUL) of industrial equipment plays an increasingly crucial role, especially for industrial intelligence. However, traditional methods pay much attention on prediction accuracy and neglect the influence of computing time. In this article, by combining cloud-edge computing with AI technology, a new data-driven method, namely, cloud-edge-based lightweight temporal convolutional networks (LTCNs), for RUL prediction is proposed. First, to meet the real-time requirement, a cloud-edge computing and AI-based framework for RUL prediction is presented. Second, a new model structure named LTCN is proposed and applied in the framework. Real-time prediction results will be obtained in the edge plane and higher accuracy prediction results will be obtained through historical information in the cloud plane. Third, an incremental learning approach based on updating partial parameters of LTCN is discussed to improve the accuracy of prediction models with newly collected data. Experiments show that our method can improve the prediction accuracy and reduce the computational time of RUL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LOoomL发布了新的文献求助10
1秒前
正直又蓝发布了新的文献求助10
2秒前
4秒前
4秒前
luoshikun完成签到,获得积分10
5秒前
彪壮的绮烟完成签到,获得积分10
7秒前
号梦发布了新的文献求助10
7秒前
飞飞呀完成签到,获得积分10
8秒前
B站萧亚轩发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
所所应助caoyulongchn采纳,获得10
9秒前
whr完成签到,获得积分10
9秒前
Roxanne完成签到,获得积分10
11秒前
源圈圈发布了新的文献求助10
14秒前
evildoer完成签到 ,获得积分10
14秒前
Membranes发布了新的文献求助30
14秒前
14秒前
Ava应助易如反掌采纳,获得10
14秒前
ANNNNN发布了新的文献求助10
15秒前
萃萃完成签到,获得积分10
19秒前
xllll完成签到,获得积分20
21秒前
大模型应助千逐采纳,获得10
21秒前
喔喔喔哦wo完成签到,获得积分10
21秒前
23秒前
今后应助DarrenVan采纳,获得10
24秒前
纪间完成签到,获得积分10
25秒前
小马甲应助研友_xnEOX8采纳,获得10
25秒前
Simen完成签到,获得积分10
26秒前
26秒前
27秒前
华仔应助超帅听枫采纳,获得10
27秒前
27秒前
Akim应助喔喔喔哦wo采纳,获得10
27秒前
27秒前
28秒前
B站萧亚轩完成签到,获得积分10
28秒前
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267472
求助须知:如何正确求助?哪些是违规求助? 2906859
关于积分的说明 8339878
捐赠科研通 2577519
什么是DOI,文献DOI怎么找? 1400992
科研通“疑难数据库(出版商)”最低求助积分说明 654998
邀请新用户注册赠送积分活动 633917