A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy

计算流体力学 核(代数) 数学 应用数学 微粒 核希尔伯特再生空间 希尔伯特空间 数学优化 数学分析 机械 物理 生态学 生物 组合数学
作者
Zekun Wang,Teng Yujun,Moubin Liu
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:384: 151-169 被引量:47
标识
DOI:10.1016/j.jcp.2019.01.017
摘要

Abstract Particulate flow has a wide range of industrial applications and is frequently modeled with coupled CFD–DEM approaches. Herein, we first identified a simulation gap between the resolved CFD–DEM and unresolved CFD–DEM through a size effect study. Then we analyzed the error sources of the conventional unresolved CFD–DEM when modeling particulate flows with comparable mesh size and particle diameter. We finally developed a semi-resolved CFD–DEM model, which combines the advantages of both resolved and unresolved CFD–DEM models. The semi-resolved CFD–DEM uses a drag force model to characterize particle–fluid interaction, while the relative velocity in the drag force model is corrected through kernel-based approximations on the neighboring fluid cells rather than simply taking values in the local cell containing the concerned particle, and the void fraction in the force model is corrected as well. In order to improve the computational efficiency, a Hilbert curve based searching strategy is used to identify the fluid cells covered by the influencing area of the kernel function. A number of numerical simulations have been conducted and numerical results from different CFD–DEM approaches are compared together with experimental data. It is shown that the presented semi-resolved CFD–DEM bridges the simulation gap between the resolved CFD–DEM and unresolved CFD–DEM while it is as efficient as the conventional unresolved CFD–DEM and as accurate as the resolved CFD–DEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
1秒前
renxiaoting发布了新的文献求助10
1秒前
2秒前
blue2021发布了新的文献求助10
2秒前
3秒前
3秒前
Owen应助汪小杰采纳,获得10
3秒前
现实的铃铛完成签到,获得积分20
4秒前
JohnsonTse发布了新的文献求助10
5秒前
CSS完成签到,获得积分10
5秒前
yy发布了新的文献求助10
6秒前
樊珩发布了新的文献求助10
7秒前
8秒前
10秒前
10秒前
ttttt发布了新的文献求助10
11秒前
某只橘猫君完成签到,获得积分10
11秒前
斯寜应助笨笨采纳,获得10
12秒前
打打应助胡卜卜采纳,获得10
12秒前
12秒前
13秒前
南桑发布了新的文献求助10
13秒前
xrc发布了新的文献求助10
14秒前
科研通AI5应助南桑采纳,获得10
17秒前
17秒前
灿烂sunfly发布了新的文献求助10
17秒前
18秒前
bkagyin应助JohnsonTse采纳,获得10
18秒前
19秒前
20秒前
21秒前
21秒前
22秒前
小叶不吃香菜完成签到,获得积分10
23秒前
乐乐乐乐乐乐乐完成签到,获得积分10
24秒前
liusong发布了新的文献求助10
26秒前
26秒前
cdercder应助fengjiang208采纳,获得20
27秒前
高分求助中
All the Birds of the World 2000
Soviet Aid to the Third World: The Facts and Figures 500
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3716178
求助须知:如何正确求助?哪些是违规求助? 3262778
关于积分的说明 9926746
捐赠科研通 2976707
什么是DOI,文献DOI怎么找? 1632459
邀请新用户注册赠送积分活动 774439
科研通“疑难数据库(出版商)”最低求助积分说明 744980