A semi-resolved CFD–DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy

CFD-DEM公司 计算流体力学 阻力 航程(航空) 机械 物理 工程类 航空航天工程
作者
Zekun Wang,Yujun Teng,Moubin Liu
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:384: 151-169 被引量:138
标识
DOI:10.1016/j.jcp.2019.01.017
摘要

Abstract Particulate flow has a wide range of industrial applications and is frequently modeled with coupled CFD–DEM approaches. Herein, we first identified a simulation gap between the resolved CFD–DEM and unresolved CFD–DEM through a size effect study. Then we analyzed the error sources of the conventional unresolved CFD–DEM when modeling particulate flows with comparable mesh size and particle diameter. We finally developed a semi-resolved CFD–DEM model, which combines the advantages of both resolved and unresolved CFD–DEM models. The semi-resolved CFD–DEM uses a drag force model to characterize particle–fluid interaction, while the relative velocity in the drag force model is corrected through kernel-based approximations on the neighboring fluid cells rather than simply taking values in the local cell containing the concerned particle, and the void fraction in the force model is corrected as well. In order to improve the computational efficiency, a Hilbert curve based searching strategy is used to identify the fluid cells covered by the influencing area of the kernel function. A number of numerical simulations have been conducted and numerical results from different CFD–DEM approaches are compared together with experimental data. It is shown that the presented semi-resolved CFD–DEM bridges the simulation gap between the resolved CFD–DEM and unresolved CFD–DEM while it is as efficient as the conventional unresolved CFD–DEM and as accurate as the resolved CFD–DEM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qaq完成签到,获得积分10
刚刚
Ma完成签到,获得积分10
2秒前
sophia_L完成签到,获得积分10
2秒前
枪王阿绣完成签到 ,获得积分10
3秒前
大个应助天天采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
陈饱饱完成签到,获得积分20
6秒前
帅气的高跟鞋关注了科研通微信公众号
7秒前
7秒前
阿司匹林发布了新的文献求助20
7秒前
8秒前
8秒前
8秒前
huan发布了新的文献求助30
9秒前
9秒前
11秒前
zhenghang发布了新的文献求助10
11秒前
dn发布了新的文献求助10
12秒前
12秒前
行程发布了新的文献求助30
13秒前
Cris发布了新的文献求助10
13秒前
13秒前
执着卿发布了新的文献求助10
14秒前
14秒前
南风完成签到 ,获得积分10
14秒前
15秒前
15秒前
轻松板栗发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
炙热的无心完成签到,获得积分10
16秒前
16秒前
16秒前
巩志成关注了科研通微信公众号
16秒前
Puffkten发布了新的文献求助10
17秒前
娇娇发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933907
求助须知:如何正确求助?哪些是违规求助? 4201940
关于积分的说明 13055538
捐赠科研通 3976004
什么是DOI,文献DOI怎么找? 2178697
邀请新用户注册赠送积分活动 1195062
关于科研通互助平台的介绍 1106433