轨道能级差
相间
金属
电解质
金属锂
材料科学
三氟甲基
化学
锂(药物)
分子
电化学
化学工程
电极
有机化学
物理化学
内分泌学
工程类
生物
医学
烷基
遗传学
作者
Weidong Zhang,Shuo‐Qing Zhang,Lei Fan,Lina Gao,Xueqian Kong,Siyuan Li,Jing Li,Xin Hong,Yingying Lü
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2019-02-05
卷期号:4 (3): 644-650
被引量:155
标识
DOI:10.1021/acsenergylett.8b02483
摘要
Interfacial stability is considered as a priority in high-energy lithium metal batteries (LMBs), stemming from the extremely low electrochemical potential of Li metal and its intrinsic high reactivity. The naturally grown solid–electrolyte interphase (SEI) containing organic compositions (e.g., R1OCOOR2, ROLi) and inorganic compositions (e.g., Li2CO3, Li3N) is thermodynamically unstable against Li metal. Herein, we created a highly stable organic interphase (HSOI) with a well-tuned LUMO energy to improve the antireduction ability of SEI components and enhance the long-term cyclability of LMBs. Employing trifluoromethyl functional groups (−CF3) in the molecule structure of a SEI can significantly tune the orbital energies and the HOMO–LUMO gap due to the strong electron-withdrawing property of −CF3 functional groups. With the protection of HSOI, cells can cycle more than 1300 h, which is 5-fold improvement in cell lifetime, demonstrating the vital role of the HSOI layer on the stability of LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI