医学
围手术期
接收机工作特性
心脏外科
逻辑回归
机械通风
单变量分析
重症监护室
弗雷明翰风险评分
心胸外科
单变量
外科
内科学
疾病
统计
多元分析
多元统计
数学
作者
Xian Zeng,Jiye An,Ru Lin,Cong Dong,Aiyu Zheng,Jianhua Li,Huilong Duan,Qiang Shu,Haomin Li
摘要
Abstract OBJECTIVES Our objectives were to identify the risk factors for postoperative complications after paediatric cardiac surgery, develop a tool for predicting postoperative complications and compare it with other risk adjustment tools of congenital heart disease. METHODS A total of 2308 paediatric patients who had undergone cardiac surgeries with cardiopulmonary bypass support in a single centre were included in this study. A univariate analysis was performed to determine the association between perioperative variables and postoperative complications. Statistically significant variables were integrated into a synthetic minority oversampling technique-based XGBoost model which is an implementation of gradient boosted decision trees designed for speed and performance. The 7 traditional risk assessment tools used to generate the logistic regression model as the benchmark in the evaluation included the Aristotle Basic score and category, Risk Adjustment for Congenital Heart Surgery (RACHS-1), Society of Thoracic Surgeons–European Association for Cardio-Thoracic Surgery (STS-EACTS) mortality score and category and STS morbidity score and category. RESULTS Our XGBoost prediction model showed the best prediction performance (area under the receiver operating characteristic curve = 0.82) when compared with these risk adjustment models. However, all of these models exhibited a relatively lower sensitivity due to imbalanced classes. The sensitivity of our optimization approach (synthetic minority oversampling technique-based XGBoost) was 0.74, which was significantly higher than the average sensitivity of the traditional models of 0.26. Furthermore, the postoperative length of hospital stay, length of cardiac intensive care unit stay and length of mechanical ventilation duration were significantly increased for patients who experienced postoperative complications. CONCLUSIONS Postoperative complications of paediatric cardiac surgery can be predicted based on perioperative data using our synthetic minority oversampling technique-based XGBoost model before deleterious outcomes ensue.
科研通智能强力驱动
Strongly Powered by AbleSci AI