生物累积
环境化学
薄膜中的扩散梯度
沉积物
生物利用度
环境科学
镉
金属毒性
生态毒理学
水污染
化学
污染
贻贝
生态学
重金属
生物
古生物学
有机化学
生物信息学
作者
Elvio D. Amato,Chamani P.M. Marasinghe Wadige,Anne M. Taylor,William A. Maher,Stuart L. Simpson,Dianne F. Jolley
标识
DOI:10.1016/j.envpol.2018.09.004
摘要
The diffusive gradients in thin films (DGT) technique has shown to be a useful tool for predicting metal bioavailability and toxicity in sediments, however, links between DGT measurements and biological responses have often relied on laboratory-based exposures and further field evaluations are required. In this study, DGT probes were deployed in metal-contaminated (Cd, Pb, Zn) sediments to evaluate relationships between bioaccumulation by the freshwater bivalve Hyridella australis and DGT-metal fluxes under both laboratory and field conditions. The DGT-metal flux measured across the sediment/water interface (±1 cm) was useful for predicting significant cadmium and zinc bioaccumulation, irrespective of the type of sediment and exposure. A greater DGT-Zn flux measured in the field was consistent with significantly higher zinc bioaccumulation, highlighting the importance of performing metal bioavailability assessments in situ. In addition, DGT fluxes were useful for predicting the potential risk of sub-lethal toxicity (i.e., lipid peroxidation and lysosomal membrane damage). Due to its ability to account for multiple metal exposures, DGT better predicted bioaccumulation and toxicity than particulate metal concentrations in sediments. These results provide further evidence supporting the applicability of the DGT technique as a monitoring tool for sediment quality assessment.
科研通智能强力驱动
Strongly Powered by AbleSci AI