Deep diagnostic agent forest (DDAF): A deep learning pathogen recognition system for pneumonia based on CT

人工智能 肺炎 机器学习 计算机科学 深度学习 病因学 医学 病理 内科学
作者
Weixiang Chen,Xiaoyu Han,Jian Wang,Yukun Cao,Xi Jia,Yuting Zheng,Jie Zhou,Wenjuan Zeng,Lin Wang,Heshui Shi,Jianjiang Feng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105143-105143 被引量:7
标识
DOI:10.1016/j.compbiomed.2021.105143
摘要

Even though antibiotics agents are widely used, pneumonia is still one of the most common causes of death around the world. Some severe, fast-spreading pneumonia can even cause huge influence on global economy and life security. In order to give optimal medication regimens and prevent infectious pneumonia's spreading, recognition of pathogens is important. In this single-institution retrospective study, 2,353 patients with their CT volumes are included, each of whom was infected by one of 12 known kinds of pathogens. We propose Deep Diagnostic Agent Forest (DDAF) to recognize the pathogen of a patient based on ones' CT volume, which is a challenging multiclass classification problem, with large intraclass variations and small interclass variations and very imbalanced data. The model achieves 0.899 ± 0.004 multi-way area under curves of receiver (AUC) for level-I pathogen recognition, which are five rough groups of pathogens, and 0.851 ± 0.003 AUC for level-II recognition, which are 12 fine-level pathogens. The model also outperforms the average result of seven human readers in level-I recognition and outperforms all readers in level-II recognition, who can only reach an average result of 7.71 ± 4.10% accuracy. Deep learning model can help in recognition pathogens using CTs only, which might help accelerate the process of etiological diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
psj发布了新的文献求助10
3秒前
3秒前
xiaozhao发布了新的文献求助10
4秒前
TianY天翊发布了新的文献求助10
4秒前
4秒前
星海种花完成签到,获得积分10
4秒前
6秒前
6秒前
阔达曲奇发布了新的文献求助10
6秒前
xiaoqian完成签到,获得积分10
6秒前
ganson完成签到 ,获得积分10
6秒前
7秒前
9秒前
xiaoqian发布了新的文献求助10
10秒前
xiaoya发布了新的文献求助10
11秒前
juziyaya应助现代数据线采纳,获得10
11秒前
星海种花发布了新的文献求助10
11秒前
TianY天翊完成签到,获得积分10
13秒前
李昊搏发布了新的文献求助10
13秒前
zt1812431172完成签到,获得积分10
14秒前
田様应助wangayting采纳,获得10
15秒前
汉堡包应助飘逸的白玉采纳,获得10
17秒前
搜集达人应助xin采纳,获得10
17秒前
xiaoya完成签到 ,获得积分10
19秒前
luca完成签到,获得积分10
20秒前
21秒前
21秒前
奶油布丁完成签到,获得积分10
23秒前
23秒前
24秒前
薰硝壤应助温柔的冰香采纳,获得10
25秒前
77发布了新的文献求助10
26秒前
wangayting发布了新的文献求助10
29秒前
30秒前
陈俊雷发布了新的文献求助10
31秒前
angel发布了新的文献求助10
32秒前
dzh发布了新的文献求助30
32秒前
李健应助无情的访冬采纳,获得10
33秒前
34秒前
科研通AI2S应助丙泊酚采纳,获得10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237