Deep diagnostic agent forest (DDAF): A deep learning pathogen recognition system for pneumonia based on CT

人工智能 肺炎 机器学习 计算机科学 深度学习 病因学 医学 病理 内科学
作者
Weixiang Chen,Xiaoyu Han,Jian Wang,Yukun Cao,Xi Jia,Yuting Zheng,Jie Zhou,Wenjuan Zeng,Lin Wang,Heshui Shi,Jianjiang Feng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:141: 105143-105143 被引量:7
标识
DOI:10.1016/j.compbiomed.2021.105143
摘要

Even though antibiotics agents are widely used, pneumonia is still one of the most common causes of death around the world. Some severe, fast-spreading pneumonia can even cause huge influence on global economy and life security. In order to give optimal medication regimens and prevent infectious pneumonia's spreading, recognition of pathogens is important. In this single-institution retrospective study, 2,353 patients with their CT volumes are included, each of whom was infected by one of 12 known kinds of pathogens. We propose Deep Diagnostic Agent Forest (DDAF) to recognize the pathogen of a patient based on ones' CT volume, which is a challenging multiclass classification problem, with large intraclass variations and small interclass variations and very imbalanced data. The model achieves 0.899 ± 0.004 multi-way area under curves of receiver (AUC) for level-I pathogen recognition, which are five rough groups of pathogens, and 0.851 ± 0.003 AUC for level-II recognition, which are 12 fine-level pathogens. The model also outperforms the average result of seven human readers in level-I recognition and outperforms all readers in level-II recognition, who can only reach an average result of 7.71 ± 4.10% accuracy. Deep learning model can help in recognition pathogens using CTs only, which might help accelerate the process of etiological diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc发布了新的文献求助10
刚刚
Litoivda完成签到 ,获得积分10
刚刚
1秒前
2秒前
3秒前
阳光BOY发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
呆呆完成签到,获得积分10
8秒前
璨澄发布了新的文献求助10
8秒前
10秒前
英姑应助个性的汲采纳,获得10
10秒前
JamesPei应助无敌小汐采纳,获得10
11秒前
FashionBoy应助无敌小汐采纳,获得10
11秒前
Litoivda发布了新的文献求助20
12秒前
激动的萧发布了新的文献求助10
13秒前
15秒前
甜甜凉面发布了新的文献求助10
15秒前
SciGPT应助556677y采纳,获得30
16秒前
能干冬瓜完成签到,获得积分10
17秒前
慕青应助激动的萧采纳,获得10
18秒前
追梦完成签到,获得积分10
20秒前
20秒前
22秒前
pengchengxi完成签到,获得积分20
22秒前
HYT完成签到,获得积分10
23秒前
小青完成签到,获得积分10
24秒前
Orange应助能干冬瓜采纳,获得10
24秒前
充电宝应助拼搏篮球采纳,获得10
25秒前
26秒前
HYT发布了新的文献求助10
26秒前
呆呆发布了新的文献求助10
26秒前
pengchengxi发布了新的文献求助10
27秒前
28秒前
安安安安安ms完成签到,获得积分10
29秒前
31秒前
PDB完成签到,获得积分10
32秒前
yang完成签到,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382