Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures

医学 败血症 器官功能障碍 麻醉学 生物标志物 接收机工作特性 内科学 重症监护医学 免疫学 病理 生物化学 化学
作者
Roman A. Lukaszewski,Helen Jones,Vivian H. Gersuk,Paul Russell,Andrew Simpson,David Brealey,Jonathan Walker,Matt Thomas,Tony Whitehouse,Marlies Ostermann,Alexander Koch,Kai Zacharowski,Mogens Kruhøffer,Damien Chaussabel,Mervyn Singer
出处
期刊:Intensive Care Medicine [Springer Nature]
卷期号:48 (9): 1133-1143 被引量:12
标识
DOI:10.1007/s00134-022-06769-z
摘要

Early accurate diagnosis of infection ± organ dysfunction (sepsis) remains a major challenge in clinical practice. Utilizing effective biomarkers to identify infection and impending organ dysfunction before the onset of clinical signs and symptoms would enable earlier investigation and intervention. To our knowledge, no prior study has specifically examined the possibility of pre-symptomatic detection of sepsis.Blood samples and clinical/laboratory data were collected daily from 4385 patients undergoing elective surgery. An adjudication panel identified 154 patients with definite postoperative infection, of whom 98 developed sepsis. Transcriptomic profiling and subsequent RT-qPCR were undertaken on sequential blood samples taken postoperatively from these patients in the three days prior to the onset of symptoms. Comparison was made against postoperative day-, age-, sex- and procedure- matched patients who had an uncomplicated recovery (n =151) or postoperative inflammation without infection (n =148).Specific gene signatures optimized to predict infection or sepsis in the three days prior to clinical presentation were identified in initial discovery cohorts. Subsequent classification using machine learning with cross-validation with separate patient cohorts and their matched controls gave high Area Under the Receiver Operator Curve (AUC) values. These allowed discrimination of infection from uncomplicated recovery (AUC 0.871), infectious from non-infectious systemic inflammation (0.897), sepsis from other postoperative presentations (0.843), and sepsis from uncomplicated infection (0.703).Host biomarker signatures may be able to identify postoperative infection or sepsis up to three days in advance of clinical recognition. If validated in future studies, these signatures offer potential diagnostic utility for postoperative management of deteriorating or high-risk surgical patients and, potentially, other patient populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻道图强应助Peter采纳,获得30
刚刚
1秒前
小李完成签到,获得积分10
1秒前
科研通AI2S应助LZYC采纳,获得10
1秒前
2秒前
都是发布了新的文献求助10
2秒前
稳重的觅翠完成签到,获得积分10
3秒前
jaden完成签到,获得积分10
3秒前
4秒前
CATH发布了新的文献求助10
7秒前
susu发布了新的文献求助10
8秒前
积极的小馒头应助psj采纳,获得10
8秒前
10秒前
11秒前
领导范儿应助安然采纳,获得10
16秒前
地表最强牛牛完成签到,获得积分10
17秒前
完美的翼发布了新的文献求助10
18秒前
小汪汪发布了新的文献求助10
19秒前
19秒前
22秒前
22秒前
鲜艳的访风完成签到,获得积分10
24秒前
飞儿完成签到,获得积分10
25秒前
柔弱狗发布了新的文献求助10
26秒前
走之完成签到,获得积分10
27秒前
半山完成签到,获得积分10
29秒前
30秒前
30秒前
施水蓝完成签到,获得积分10
30秒前
雪白雍发布了新的文献求助10
32秒前
彭于晏应助都是采纳,获得10
32秒前
martina发布了新的文献求助30
33秒前
飘逸的山柏完成签到 ,获得积分10
34秒前
34秒前
李健的粉丝团团长应助Doki采纳,获得10
36秒前
安然发布了新的文献求助10
37秒前
jaden发布了新的文献求助10
38秒前
哭泣大米完成签到 ,获得积分20
39秒前
40秒前
huchen发布了新的文献求助10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237