莱赛尔
粘胶
材料科学
纺纱
韧性(矿物学)
纤维素纤维
离子液体
复合材料
纤维素
纤维
再生纤维素
高分子科学
细度
化学工程
化学
有机化学
工程类
催化作用
作者
Anne Michud,Marjaana Tanttu,Shirin Asaadi,Yibo Ma,Eveliina Netti,Pirjo Kääriäinen,Anders Persson,Anders Berntsson,Michael Hummel,Herbert Sixta
标识
DOI:10.1177/0040517515591774
摘要
Ioncell-F, a recently developed process for the production of man-made cellulosic fibers from ionic liquid solutions by dry-jet wet spinning, is presented as an alternative to the viscose and N-methylmorpholine N-oxide (NMMO)-based Lyocell processes. The ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate was identified as excellent cellulose solvent allowing for a rapid dissolution at moderate temperatures and subsequent shaping into continuous filaments. The highly oriented cellulose fibers obtained upon coagulation in cold water exhibited superior tenacity, exceeding that of commercial viscose and NMMO-based Lyocell (Tencel®) fibers. The respective staple fibers, which have been converted into two-ply yarn by ring spinning technology, presented very high tenacity. Furthermore, the Ioncell yarn showed very good behavior during the knitting and weaving processes, reflecting the quality of the produced yarn. The successfully knitted and woven garments from the Ioncell yarn demonstrate the suitability of this particular ionic liquid for the production of man-made cellulosic fibers and thus give a promising outlook for the future of the Ioncell-F process.
科研通智能强力驱动
Strongly Powered by AbleSci AI