Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study

医学 肺癌 人工智能 深度学习 组织病理学 分类器(UML) 腺癌 机器学习 癌症 病理 内科学 计算机科学
作者
Huan Yang,Lili Chen,Zhiqiang Cheng,Mo Yang,Jianbo Wang,Cheng-Hao Lin,Yuefeng Wang,Leilei Huang,Yangshan Chen,Sui Peng,Zunfu Ke,Weizhong Li
出处
期刊:BMC Medicine [Springer Nature]
卷期号:19 (1) 被引量:55
标识
DOI:10.1186/s12916-021-01953-2
摘要

Targeted therapy and immunotherapy put forward higher demands for accurate lung cancer classification, as well as benign versus malignant disease discrimination. Digital whole slide images (WSIs) witnessed the transition from traditional histopathology to computational approaches, arousing a hype of deep learning methods for histopathological analysis. We aimed at exploring the potential of deep learning models in the identification of lung cancer subtypes and cancer mimics from WSIs.We initially obtained 741 WSIs from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) for the deep learning model development, optimization, and verification. Additional 318 WSIs from SYSUFH, 212 from Shenzhen People's Hospital, and 422 from The Cancer Genome Atlas were further collected for multi-centre verification. EfficientNet-B5- and ResNet-50-based deep learning methods were developed and compared using the metrics of recall, precision, F1-score, and areas under the curve (AUCs). A threshold-based tumour-first aggregation approach was proposed and implemented for the label inferencing of WSIs with complex tissue components. Four pathologists of different levels from SYSUFH reviewed all the testing slides blindly, and the diagnosing results were used for quantitative comparisons with the best performing deep learning model.We developed the first deep learning-based six-type classifier for histopathological WSI classification of lung adenocarcinoma, lung squamous cell carcinoma, small cell lung carcinoma, pulmonary tuberculosis, organizing pneumonia, and normal lung. The EfficientNet-B5-based model outperformed ResNet-50 and was selected as the backbone in the classifier. Tested on 1067 slides from four cohorts of different medical centres, AUCs of 0.970, 0.918, 0.963, and 0.978 were achieved, respectively. The classifier achieved high consistence to the ground truth and attending pathologists with high intraclass correlation coefficients over 0.873.Multi-cohort testing demonstrated our six-type classifier achieved consistent and comparable performance to experienced pathologists and gained advantages over other existing computational methods. The visualization of prediction heatmap improved the model interpretability intuitively. The classifier with the threshold-based tumour-first label inferencing method exhibited excellent accuracy and feasibility in classifying lung cancers and confused nonneoplastic tissues, indicating that deep learning can resolve complex multi-class tissue classification that conforms to real-world histopathological scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴雨峰完成签到,获得积分10
2秒前
颜小溪发布了新的文献求助10
2秒前
超级雅霜完成签到,获得积分10
3秒前
3秒前
达da完成签到,获得积分10
4秒前
lxy应助weibolizi采纳,获得10
4秒前
银河苏打发布了新的文献求助10
8秒前
颜小溪完成签到,获得积分10
9秒前
随机子应助aaaaal采纳,获得10
10秒前
11秒前
大个应助vanshaw.vs采纳,获得10
12秒前
小马甲应助左丘冥采纳,获得10
13秒前
13秒前
DH完成签到 ,获得积分10
15秒前
16秒前
17秒前
ocean完成签到,获得积分10
19秒前
20秒前
魔幻的毛巾完成签到,获得积分10
21秒前
wanci应助陶醉觅夏采纳,获得10
22秒前
顽主发布了新的文献求助10
22秒前
Liuuhhua发布了新的文献求助10
24秒前
冷静乌发布了新的文献求助10
25秒前
洂浔完成签到 ,获得积分10
29秒前
杋困了完成签到 ,获得积分10
29秒前
32秒前
英姑应助科研不算楠采纳,获得10
33秒前
daguan完成签到,获得积分10
33秒前
liuHX完成签到,获得积分10
34秒前
陶醉觅夏发布了新的文献求助10
36秒前
hejinjin完成签到,获得积分10
37秒前
xf完成签到,获得积分10
37秒前
37秒前
39秒前
39秒前
Sew东坡完成签到,获得积分10
40秒前
桐桐应助雪儿采纳,获得10
41秒前
小唐发布了新的文献求助10
42秒前
灬谢池春i发布了新的文献求助10
44秒前
韩一完成签到 ,获得积分10
44秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388