CauSeR

人气 计算机科学 会话(web分析) 因果推理 推论 机器学习 排名(信息检索) 人工智能 推荐系统 过程(计算) 情报检索 数据挖掘 计量经济学 万维网 心理学 经济 操作系统 社会心理学
作者
Priyanka Gupta,Ankit Sharma,Pankaj Malhotra,Lovekesh Vig,Gautam R. Shroff
标识
DOI:10.1145/3459637.3482071
摘要

Recommender Systems (RS) tend to recommend more popular items instead of the relevant long-tail items. Mitigating such popularity bias is crucial to ensure that less popular but relevant items are part of the recommendation list shown to the user. In this work, we study the phenomenon of popularity bias in session-based RS (SRS) obtained via deep learning (DL) models. We observe that DL models trained on the historical user-item interactions in session logs (having long-tailed item-click distributions) tend to amplify popularity bias. To understand the source of this bias amplification, we consider potential sources of bias at two distinct stages in the modeling process: i. the data-generation stage (user-item interactions captured as session logs), ii. the DL model training stage. We highlight that the popularity of an item has a causal effect on i. user-item interactions via conformity bias, as well as ii. item ranking from DL models via biased training process due to class (target item) imbalance. While most existing approaches in literature address only one of these effects, we consider a comprehensive causal inference framework that identifies and mitigates the effects at both stages. Through extensive empirical evaluation on simulated and real-world datasets, we show that our approach improves upon several strong baselines from literature for popularity bias and long-tailed classification. Ablation studies show the advantage of our comprehensive causal analysis to identify and handle bias in data generation as well as training stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助qi采纳,获得30
2秒前
3秒前
传奇3应助fangliu采纳,获得10
3秒前
tengyier发布了新的文献求助10
6秒前
7秒前
科研通AI6应助繁荣的凡英采纳,获得30
8秒前
haobhaobhaob完成签到,获得积分10
9秒前
强健的刺猬完成签到,获得积分10
9秒前
momo完成签到,获得积分10
10秒前
72323完成签到,获得积分10
10秒前
Akim应助柊苒采纳,获得10
11秒前
阿崔完成签到,获得积分10
11秒前
快乐小狗发布了新的文献求助10
12秒前
13秒前
13秒前
乐乐应助Whisper采纳,获得10
13秒前
热电CAT完成签到,获得积分10
13秒前
14秒前
江小鱼发布了新的文献求助10
15秒前
fangliu发布了新的文献求助10
16秒前
16秒前
坦率雁卉完成签到,获得积分10
17秒前
18秒前
19秒前
zypazyp发布了新的文献求助10
19秒前
19秒前
加缪应助927采纳,获得10
20秒前
遇上就这样吧应助覃浩洋采纳,获得50
20秒前
ekswai完成签到,获得积分10
20秒前
梨花诗完成签到,获得积分10
20秒前
20秒前
大个应助顺顺利利采纳,获得10
21秒前
烟熏柿子发布了新的文献求助10
21秒前
炙热短靴发布了新的文献求助10
22秒前
共享精神应助tengyier采纳,获得10
23秒前
赘婿应助美满平松采纳,获得10
23秒前
23秒前
梨花诗发布了新的文献求助10
24秒前
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971