CauSeR

人气 计算机科学 会话(web分析) 因果推理 推论 机器学习 排名(信息检索) 人工智能 推荐系统 过程(计算) 情报检索 数据挖掘 计量经济学 万维网 心理学 经济 操作系统 社会心理学
作者
Priyanka Gupta,Ankit Sharma,Pankaj Malhotra,Lovekesh Vig,Gautam Shroff
标识
DOI:10.1145/3459637.3482071
摘要

Recommender Systems (RS) tend to recommend more popular items instead of the relevant long-tail items. Mitigating such popularity bias is crucial to ensure that less popular but relevant items are part of the recommendation list shown to the user. In this work, we study the phenomenon of popularity bias in session-based RS (SRS) obtained via deep learning (DL) models. We observe that DL models trained on the historical user-item interactions in session logs (having long-tailed item-click distributions) tend to amplify popularity bias. To understand the source of this bias amplification, we consider potential sources of bias at two distinct stages in the modeling process: i. the data-generation stage (user-item interactions captured as session logs), ii. the DL model training stage. We highlight that the popularity of an item has a causal effect on i. user-item interactions via conformity bias, as well as ii. item ranking from DL models via biased training process due to class (target item) imbalance. While most existing approaches in literature address only one of these effects, we consider a comprehensive causal inference framework that identifies and mitigates the effects at both stages. Through extensive empirical evaluation on simulated and real-world datasets, we show that our approach improves upon several strong baselines from literature for popularity bias and long-tailed classification. Ablation studies show the advantage of our comprehensive causal analysis to identify and handle bias in data generation as well as training stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助郑麻采纳,获得10
1秒前
慕青应助咖啡猫采纳,获得10
1秒前
1秒前
1秒前
大火炉完成签到,获得积分10
2秒前
shadow发布了新的文献求助10
2秒前
Jasper应助江阳宏采纳,获得10
2秒前
充电宝应助玉米烤肠采纳,获得10
3秒前
科研通AI6应助高兴的牛排采纳,获得10
3秒前
purple完成签到 ,获得积分10
3秒前
jw发布了新的文献求助10
3秒前
4秒前
风趣的灵发布了新的文献求助10
4秒前
爱学习的小张完成签到,获得积分10
4秒前
4秒前
崔三爷发布了新的文献求助10
5秒前
wwwww完成签到,获得积分10
5秒前
酷波er应助Pessica采纳,获得10
5秒前
缓慢的紫翠完成签到,获得积分10
5秒前
简让完成签到 ,获得积分10
5秒前
5秒前
huang发布了新的文献求助10
5秒前
6秒前
在水一方应助wsq采纳,获得10
7秒前
7秒前
小徐发布了新的文献求助10
7秒前
7秒前
shadow完成签到,获得积分10
8秒前
温暖半雪完成签到,获得积分10
8秒前
8秒前
Xinpei发布了新的文献求助30
8秒前
emberflow完成签到,获得积分10
8秒前
wanggest发布了新的文献求助20
9秒前
xiaowuen完成签到,获得积分10
9秒前
dr0422发布了新的文献求助10
10秒前
刘医生完成签到,获得积分10
10秒前
10秒前
汉堡包应助默默的彩虹采纳,获得10
10秒前
秋风发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587825
求助须知:如何正确求助?哪些是违规求助? 4670935
关于积分的说明 14784844
捐赠科研通 4623853
什么是DOI,文献DOI怎么找? 2531438
邀请新用户注册赠送积分活动 1500148
关于科研通互助平台的介绍 1468194