Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study

医学 病态的 二元分类 人工智能 放射科 病理 计算机科学 支持向量机
作者
Yuzhang Tao,Xiao Huang,Yiwen Tan,Hongwei Wang,Weiqian Jiang,Yu Chen,Chenglong Wang,Jing Luo,Zhi Liu,Kangrong Gao,Yang Wu,Minkang Guo,Boyu Tang,Aiguo Zhou,Mengli Yao,Tingmei Chen,Youde Cao,Chengsi Luo,Jian Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:12
标识
DOI:10.3389/fonc.2021.735739
摘要

Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists.A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area.VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions.DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李畅发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
lxwwwxl发布了新的文献求助10
6秒前
田様应助脑三问采纳,获得10
6秒前
FartKing发布了新的文献求助10
6秒前
allen完成签到,获得积分10
7秒前
xcz完成签到,获得积分10
7秒前
落骛发布了新的文献求助10
8秒前
Jenna完成签到 ,获得积分10
9秒前
10秒前
爆米花应助FartKing采纳,获得30
14秒前
一叶知秋应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
宅多点应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
lisi应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
15秒前
大龙哥886应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
Emma应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866