Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study

医学 病态的 二元分类 人工智能 放射科 病理 计算机科学 支持向量机
作者
Yuzhang Tao,Xiao Huang,Yiwen Tan,Hongwei Wang,Weiqian Jiang,Yu Chen,Chenglong Wang,Jing Luo,Zhi Liu,Kangrong Gao,Yang Wu,Minkang Guo,Boyu Tang,Aiguo Zhou,Mengli Yao,Tingmei Chen,Youde Cao,Chengsi Luo,Jian Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:12
标识
DOI:10.3389/fonc.2021.735739
摘要

Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists.A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area.VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions.DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaa发布了新的文献求助10
刚刚
搞怪路灯发布了新的文献求助10
1秒前
脑洞疼应助天气晴朗采纳,获得10
1秒前
1秒前
Eden发布了新的文献求助10
1秒前
幸福小猫发布了新的文献求助10
1秒前
简单平蓝完成签到,获得积分10
2秒前
2秒前
无糖加冰完成签到,获得积分10
2秒前
shenzhou9完成签到,获得积分10
2秒前
dgbsw完成签到,获得积分10
2秒前
柚柚发布了新的文献求助10
3秒前
3秒前
sherry完成签到,获得积分20
3秒前
3秒前
一杯半茶完成签到,获得积分10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
bkagyin应助文艺的从波采纳,获得10
4秒前
霞子发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
光热效应发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
爱听歌时光完成签到,获得积分10
4秒前
4秒前
小陈同学应助科研通管家采纳,获得10
4秒前
SciGPT应助韩保晨采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
英姑应助xixi采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
田様应助hh采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590