Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study

医学 病态的 二元分类 人工智能 放射科 病理 计算机科学 支持向量机
作者
Yuzhang Tao,Xiao Huang,Yiwen Tan,Hongwei Wang,Weiqian Jiang,Yu Chen,Chenglong Wang,Jing Luo,Zhi Liu,Kangrong Gao,Yang Wu,Minkang Guo,Boyu Tang,Aiguo Zhou,Mengli Yao,Tingmei Chen,Youde Cao,Chengsi Luo,Jian Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:12
标识
DOI:10.3389/fonc.2021.735739
摘要

Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists.A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area.VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions.DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骆驼林子完成签到,获得积分10
刚刚
1秒前
书生也是小郎中完成签到 ,获得积分10
2秒前
3秒前
3秒前
小蘑菇应助asnly采纳,获得10
5秒前
6秒前
pluto应助么么采纳,获得40
7秒前
pluto应助么么采纳,获得50
7秒前
pluto应助么么采纳,获得50
7秒前
忧郁的哲瀚完成签到,获得积分10
10秒前
11秒前
Xiaojun发布了新的文献求助10
11秒前
认真的一刀完成签到,获得积分10
13秒前
13秒前
顺心的舞蹈完成签到,获得积分10
14秒前
15秒前
Xiaoxiannv完成签到,获得积分10
16秒前
jjjjjjj发布了新的文献求助10
16秒前
顺心的定帮完成签到 ,获得积分10
16秒前
大个应助ke采纳,获得10
16秒前
逍遥猪皮完成签到,获得积分10
17秒前
南小琴发布了新的文献求助10
18秒前
18秒前
科研闲人完成签到,获得积分10
19秒前
20秒前
科目三应助lieditongxu采纳,获得10
21秒前
21秒前
丹dan完成签到,获得积分10
22秒前
drtianyunhong完成签到,获得积分10
23秒前
调研昵称发布了新的文献求助10
24秒前
慕青应助知世耶采纳,获得10
24秒前
雪山飞龙发布了新的文献求助10
25秒前
科研通AI2S应助当人不浪采纳,获得10
26秒前
老王发布了新的文献求助10
26秒前
26秒前
28秒前
科研通AI2S应助浅浅采纳,获得10
28秒前
29秒前
jjjjjjj完成签到,获得积分20
30秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213900
求助须知:如何正确求助?哪些是违规求助? 2862498
关于积分的说明 8133942
捐赠科研通 2528654
什么是DOI,文献DOI怎么找? 1362780
科研通“疑难数据库(出版商)”最低求助积分说明 643713
邀请新用户注册赠送积分活动 616041