Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study

医学 病态的 二元分类 人工智能 放射科 病理 计算机科学 支持向量机
作者
Yuzhang Tao,Xiao Huang,Yiwen Tan,Hongwei Wang,Weiqian Jiang,Yu Chen,Chenglong Wang,Jing Luo,Zhi Liu,Kangrong Gao,Yang Wu,Minkang Guo,Boyu Tang,Aiguo Zhou,Mengli Yao,Tingmei Chen,Youde Cao,Chengsi Luo,Jian Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:12
标识
DOI:10.3389/fonc.2021.735739
摘要

Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists.A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area.VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions.DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的难敌完成签到,获得积分10
刚刚
刚刚
顾矜应助过奖啦采纳,获得10
刚刚
清水巍少发布了新的文献求助10
刚刚
Cissy发布了新的文献求助10
刚刚
luckysame发布了新的文献求助10
1秒前
惜云发布了新的文献求助10
1秒前
冲鸭完成签到,获得积分10
1秒前
赘婿应助yfy采纳,获得10
2秒前
yuyu发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
所所应助怕热除铁采纳,获得10
5秒前
孤独的涔完成签到,获得积分10
5秒前
jazz完成签到,获得积分10
5秒前
白昼の月完成签到 ,获得积分0
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
坦率的香烟完成签到,获得积分10
6秒前
6秒前
大方小苏完成签到,获得积分10
7秒前
7秒前
8秒前
自觉紫山发布了新的文献求助10
8秒前
8秒前
9秒前
酷波er应助biubiu采纳,获得10
10秒前
10秒前
三十三完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
NIER完成签到,获得积分20
11秒前
胡家裕完成签到 ,获得积分10
12秒前
顾矜应助和谐的洋葱采纳,获得10
12秒前
盛欢发布了新的文献求助20
12秒前
luckysame发布了新的文献求助10
13秒前
完美世界应助Netsky采纳,获得10
13秒前
张彩红完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068023
求助须知:如何正确求助?哪些是违规求助? 4289750
关于积分的说明 13365025
捐赠科研通 4109504
什么是DOI,文献DOI怎么找? 2250387
邀请新用户注册赠送积分活动 1255727
关于科研通互助平台的介绍 1188244