Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study

医学 病态的 二元分类 人工智能 放射科 病理 计算机科学 支持向量机
作者
Yuzhang Tao,Xiao Huang,Yiwen Tan,Hongwei Wang,Weiqian Jiang,Yu Chen,Chenglong Wang,Jing Luo,Zhi Liu,Kangrong Gao,Yang Wu,Minkang Guo,Boyu Tang,Aiguo Zhou,Mengli Yao,Tingmei Chen,Youde Cao,Chengsi Luo,Jian Zhang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:12
标识
DOI:10.3389/fonc.2021.735739
摘要

Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists.A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area.VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions.DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜绍辉发布了新的文献求助10
刚刚
Lxx完成签到,获得积分10
刚刚
宋佳珍完成签到,获得积分10
刚刚
Lucas应助雾里青采纳,获得10
刚刚
研友_VZG7GZ应助xiaoE采纳,获得10
刚刚
快乐科研发布了新的文献求助10
刚刚
1秒前
爆米花应助111采纳,获得10
1秒前
xxx发布了新的文献求助10
1秒前
蓦然回首完成签到,获得积分10
1秒前
1秒前
和谐青柏应助slimayw12采纳,获得10
1秒前
1秒前
2秒前
2秒前
能干寻芹完成签到,获得积分10
2秒前
小栩完成签到,获得积分10
2秒前
yel发布了新的文献求助10
3秒前
3秒前
zz完成签到,获得积分20
3秒前
一点完成签到,获得积分10
3秒前
ccccc完成签到,获得积分20
4秒前
七n一发布了新的文献求助10
4秒前
luchong发布了新的文献求助50
4秒前
4秒前
5秒前
坚强的赛凤完成签到,获得积分10
5秒前
大模型应助warithy采纳,获得10
5秒前
xixima发布了新的文献求助10
5秒前
丘比特应助务实的落雁采纳,获得10
5秒前
飞飞飞完成签到,获得积分10
5秒前
忧伤的静竹完成签到 ,获得积分10
5秒前
星辰发布了新的文献求助10
5秒前
ZC发布了新的文献求助10
6秒前
6秒前
6秒前
wang97发布了新的文献求助100
7秒前
7秒前
ccccc发布了新的文献求助10
7秒前
代号鸢尾完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577