Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI

无线电技术 医学 乳腺癌 乳腺摄影术 放射科 核医学 内科学 肿瘤科 癌症 接收机工作特性
作者
Shuxian Niu,Wenyan Jiang,Nannan Zhao,Tao Jiang,Yue Dong,Yahong Luo,Tao Yu,Xiran Jiang
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:148 (1): 97-106 被引量:31
标识
DOI:10.1007/s00432-021-03822-0
摘要

This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular subtypes of breast cancer. A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator (LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), specificity and sensitivity as comparison metrics. The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation (HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort. Peritumoral regions can provide complementary information to intratumoral regions for the prediction of molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, but lower AUCs for the prediction of HER2-enriched and TN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿龙发布了新的文献求助10
刚刚
Aiden完成签到,获得积分10
刚刚
Xiaosi完成签到,获得积分10
刚刚
san完成签到,获得积分10
刚刚
一只生物狗完成签到,获得积分10
刚刚
piaopiao1122发布了新的文献求助10
1秒前
1秒前
1秒前
善学以致用应助夏儿采纳,获得10
1秒前
FashionBoy应助拿破仑的鱼采纳,获得10
2秒前
2秒前
迷失浪人发布了新的文献求助10
2秒前
liang发布了新的文献求助10
4秒前
唐新惠完成签到 ,获得积分10
4秒前
4秒前
xiaofu完成签到,获得积分20
4秒前
XQJ完成签到,获得积分10
4秒前
和谐的敏完成签到,获得积分10
4秒前
wuludie应助天真紫伊采纳,获得20
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Cheney完成签到,获得积分10
6秒前
猫小咪发布了新的文献求助10
6秒前
Moriarty完成签到,获得积分10
6秒前
坚强的芸遥完成签到,获得积分10
6秒前
王晓茜完成签到,获得积分20
7秒前
未道发布了新的文献求助10
7秒前
7秒前
完美麦片完成签到,获得积分10
8秒前
8秒前
衢夭完成签到,获得积分10
9秒前
咿呀咿呀哟完成签到,获得积分0
9秒前
岳欣应助知识进脑子吧采纳,获得10
9秒前
酱酱江将蒋完成签到 ,获得积分10
9秒前
piaopiao1122完成签到,获得积分10
10秒前
求助人员发布了新的文献求助30
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197