Intra- and peritumoral radiomics on assessment of breast cancer molecular subtypes based on mammography and MRI

无线电技术 医学 乳腺癌 乳腺摄影术 放射科 核医学 内科学 肿瘤科 癌症 接收机工作特性
作者
Shuxian Niu,Wenyan Jiang,Nannan Zhao,Tao Jiang,Yue Dong,Yahong Luo,Tao Yu,Xiran Jiang
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:148 (1): 97-106 被引量:31
标识
DOI:10.1007/s00432-021-03822-0
摘要

This study aimed to investigate the efficacy of digital mammography (DM), digital breast tomosynthesis (DBT), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI separately and combined in the prediction of molecular subtypes of breast cancer. A total of 241 patients were enrolled and underwent breast MD, DBT, DW and DCE scans. Radiomics features were calculated from intra- and peritumoral regions, and selected with least absolute shrinkage and selection operator (LASSO) regression to develop radiomics signatures (RSs). Prediction performance of intra- and peritumoral regions in the four modalities were evaluated and compared with area under the receiver-operating characteristic (ROC) curve (AUC), specificity and sensitivity as comparison metrics. The RSs derived from combined intra- and peritumoral regions improved prediction AUCs compared with those from intra- or peritumoral regions alone. DM plus DBT generated better AUCs than the DW plus DCE on predicting Luminal A and Luminal B in the training (Luminal A: 0.859 and 0.805; Luminal B: 0.773 and 0.747) and validation (Luminal A: 0.906 and 0.853; Luminal B: 0.807 and 0.784) cohort. For the prediction of HER2-enriched and TN, the DW plus DCE yielded better AUCs than the DM plus DBT in the training (HER2-enriched: 0.954 and 0.857; TN: 0.877 and 0.802) and validation (HER2-enriched: 0.974 and 0.907; TN: 0.938 and 0.874) cohort. Peritumoral regions can provide complementary information to intratumoral regions for the prediction of molecular subtypes. Compared with MRI, the mammography showed higher AUCs for the prediction of Luminal A and B, but lower AUCs for the prediction of HER2-enriched and TN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的紫伊完成签到,获得积分10
刚刚
西贝完成签到,获得积分20
刚刚
1秒前
活泼的INFJ发布了新的文献求助10
2秒前
邱海华完成签到,获得积分10
2秒前
自由悟空完成签到,获得积分10
2秒前
彬彬发布了新的文献求助10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
超帅的金鱼完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
taowang发布了新的文献求助10
3秒前
田様应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得30
3秒前
所所应助科研通管家采纳,获得10
3秒前
吴梅应助科研通管家采纳,获得10
3秒前
3秒前
王云鹏完成签到,获得积分10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
4秒前
CipherSage应助WQ采纳,获得10
4秒前
苏卿应助五迟早采纳,获得10
5秒前
Lucas应助ExtroGod采纳,获得10
5秒前
kyt1633发布了新的文献求助10
6秒前
苏卿应助研友_8Y26PL采纳,获得10
8秒前
8秒前
rmx完成签到,获得积分10
8秒前
咕噜咕噜发布了新的文献求助10
8秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159473
求助须知:如何正确求助?哪些是违规求助? 2810505
关于积分的说明 7888418
捐赠科研通 2469473
什么是DOI,文献DOI怎么找? 1314873
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012