A machine-learning-based method to predict adverse events in patients with dilated cardiomyopathy and severely reduced ejection fractions

医学 不利影响 接收机工作特性 心脏病学 内科学 曲线下面积 扩张型心肌病 心力衰竭 射血分数 心脏移植 移植 舒张期 血压
作者
Shenglei Shu,Ziming Hong,Qinmu Peng,Xiaoyue Zhou,Tianjng Zhang,Jing Wang,Chuansheng Zheng
出处
期刊:British Journal of Radiology [Wiley]
卷期号:94 (1127) 被引量:10
标识
DOI:10.1259/bjr.20210259
摘要

Patients with dilated cardiomyopathy (DCM) and severely reduced left ventricular ejection fractions (LVEFs) are at very high risks of experiencing adverse cardiac events. A machine learning (ML) method could enable more effective risk stratification for these high-risk patients by incorporating various types of data. The aim of this study was to build an ML model to predict adverse events including all-cause deaths and heart transplantation in DCM patients with severely impaired LV systolic function.One hundred and eighteen patients with DCM and severely reduced LVEFs (<35%) were included. The baseline clinical characteristics, laboratory data, electrocardiographic, and cardiac magnetic resonance (CMR) features were collected. Various feature selection processes and classifiers were performed to select an ML model with the best performance. The predictive performance of tested ML models was evaluated using the area under the curve (AUC) of the receiver operating characteristic curve using 10-fold cross-validation.Twelve patients died, and 17 patients underwent heart transplantation during the median follow-up of 508 days. The ML model included systolic blood pressure, left ventricular end-systolic and end-diastolic volume indices, and late gadolinium enhancement (LGE) extents on CMR imaging, and a support vector machine was selected as a classifier. The model showed excellent performance in predicting adverse events in DCM patients with severely reduced LVEF (the AUC and accuracy values were 0.873 and 0.763, respectively).This ML technique could effectively predict adverse events in DCM patients with severely reduced LVEF.The ML method has superior ability in risk stratification in severe DCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
倪l完成签到,获得积分10
1秒前
liu发布了新的文献求助10
3秒前
和和和完成签到,获得积分10
5秒前
6秒前
充电宝应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
NICAI应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
哈哈发布了新的文献求助10
10秒前
JamesPei应助研友_Ze2vV8采纳,获得10
10秒前
英姑应助怕黑傲珊采纳,获得10
11秒前
17秒前
oi发布了新的文献求助10
17秒前
共享精神应助研友_Ze2vV8采纳,获得10
21秒前
微毒麻醉完成签到,获得积分10
21秒前
果果完成签到,获得积分10
23秒前
23秒前
是真灵还是机灵完成签到 ,获得积分10
24秒前
Tabby完成签到,获得积分10
25秒前
26秒前
27秒前
54完成签到,获得积分10
27秒前
song完成签到 ,获得积分10
28秒前
29秒前
光崽是谁发布了新的文献求助10
31秒前
Eva完成签到,获得积分10
31秒前
淞33完成签到 ,获得积分10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741439
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038416
捐赠科研通 3000937
什么是DOI,文献DOI怎么找? 1646889
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478