Hybrid workflow of Simulation and Deep Learning on HPC: A Case Study for Material Behavior Determination

工作流程 计算机科学 机器学习 人工神经网络 人工智能 深度学习 任务(项目管理) 领域(数学分析) 软件 噪音(视频) 鉴定(生物学) 计算机工程 数据库 图像(数学) 生物 数学分析 经济 植物 管理 程序设计语言 数学
作者
Li Zhong,Dennis Hoppe,Naweiluo Zhou,Oleksandr Shcherbakov
出处
期刊:International Conference on Cluster Computing
标识
DOI:10.1109/cluster48925.2021.00104
摘要

Nowadays, machine learning (ML), especially deep learning(DL) methods, provide ever more real-life solutions. However, the lack of training data is often a crucial issue for these learning algorithms, the performance accuracy of which relies on the amount and the quality of the available data. This is particularly true when applying ML/DL based methods for specific areas e.g. material characteristics identification, as it requires huge cost of time and manual power getting observational data from real life. In the mean while, simulations on HPC have already been commonly used in computational science due to the fact that it has the ability of generating sufficient and noise free data, which can be used for training the ML/DL based models. However, in order to achieve accurate simulation results the input parameters usually have to be determined and validated by a large number of tests. Furthermore, the evaluation and validation of such input parameters for the simulation often require a deep understanding of the domain specific knowledge, software and programming skills, which can in turn be solved by ML/DL based methods. In this paper, a novel hybrid workflow combining a multi-task neural network and the simulation on high performance computers(HPC) is proposed, which can address the problem of data sparsity and reduce the demand for expertise, resources, and time in determining the validated parameters for simulation. This work is demonstrated through experiments on determination of material behaviors, and the results prove a promising performance (MSE = 0.0386) through this workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助科研通管家采纳,获得20
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
mashu应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
4秒前
小高发布了新的文献求助20
6秒前
6秒前
Jasper应助树上的哚吡采纳,获得10
7秒前
顾矜应助shit采纳,获得10
7秒前
写代码的木船完成签到 ,获得积分10
8秒前
9秒前
呆萌蜻蜓完成签到,获得积分20
10秒前
桃子发布了新的文献求助10
10秒前
Cathy发布了新的文献求助10
12秒前
12秒前
LHL发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
16秒前
热心丹南发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
22秒前
25秒前
suk完成签到,获得积分10
28秒前
lifeline发布了新的文献求助30
28秒前
28秒前
aaa发布了新的文献求助20
31秒前
36秒前
sansan完成签到 ,获得积分10
39秒前
wanci应助义气碧菡采纳,获得10
40秒前
星空完成签到 ,获得积分10
40秒前
40秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624