E-Commerce Product Recommendation Agents: Use, Characteristics, and Impact

业务 产品(数学) 电子商务 营销 知识管理 产业组织 过程管理 风险分析(工程) 商业 计算机科学 万维网 几何学 数学
作者
Mei Xiao,Benbasat
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:31 (1): 137-137 被引量:812
标识
DOI:10.2307/25148784
摘要

Recommendation agents (RAs) are software agents that elicit the interests or preferences of individual consumers for products, either explicitly or implicitly, and make recommendations accordingly. RAs have the potential to support and improve the quality of the decisions consumers make when searching for and selecting products online. They can reduce the information overload facing consumers, as well as the complexity of online searches. Prior research on RAs has focused mostly on developing and evaluating different underlying algorithms that generate recommendations. This paper instead identifies other important aspects of RAs, namely RA use, RA characteristics, provider credi'r, and user-RA interaction, which influence users' decision-making processes and outcomes, as well as their evaluation of RAs. It goes beyond generalized models, such as TAM, and identifies the RA-specific features, such as RA input, process, and output design characteristics, that affect users' evaluations, including their assessments of the usefulness and ease-of-use of RA applications. Based on a review of existing literature on e-commerce RAs, this paper develops a conceptual model with 28 propositions derived from five theoretical perspectives. The propositions help answer the two research questions: (1) How do RA use, RA characteristics, and other factors influence consumer decision making processes and outcomes? (2) How do RA use, RA characteristics, and other factors influence users' evaluations of RAs? By identifying the critical gaps between what we know and what we need to know, this paper identifies potential areas of future research for scholars. It also provides advice to information systems practitioners concerning the effective design and development of RAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxxxxx完成签到 ,获得积分10
刚刚
zhuiyu发布了新的文献求助10
刚刚
一年发3篇JACS完成签到,获得积分10
刚刚
刚刚
感性的蜜蜂完成签到,获得积分10
1秒前
弥淮发布了新的文献求助10
1秒前
2秒前
Z趋势完成签到,获得积分10
4秒前
窦窦窦窦窦完成签到,获得积分10
5秒前
5秒前
zxy完成签到,获得积分10
5秒前
邹幻雪发布了新的文献求助10
6秒前
CodeCraft应助谁家那小谁采纳,获得10
6秒前
果酱完成签到,获得积分10
7秒前
Ava应助儒雅的雁山采纳,获得10
8秒前
9秒前
9秒前
10秒前
SciGPT应助Wsq采纳,获得10
10秒前
爱撒娇的寻真完成签到,获得积分10
11秒前
所所应助Li采纳,获得10
12秒前
虚拟的柠檬完成签到,获得积分10
12秒前
zifanchen发布了新的文献求助10
13秒前
潇潇雨歇发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助小李采纳,获得10
13秒前
14秒前
邹幻雪完成签到,获得积分10
14秒前
15秒前
wentong完成签到,获得积分10
16秒前
李克杨完成签到,获得积分10
16秒前
16秒前
Esang发布了新的文献求助10
17秒前
xqq发布了新的文献求助10
18秒前
18秒前
19秒前
MUMU发布了新的文献求助10
20秒前
潇潇雨歇发布了新的文献求助10
20秒前
geraltgg完成签到,获得积分10
21秒前
Esang完成签到,获得积分10
21秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084504
求助须知:如何正确求助?哪些是违规求助? 2737517
关于积分的说明 7545573
捐赠科研通 2387170
什么是DOI,文献DOI怎么找? 1265830
科研通“疑难数据库(出版商)”最低求助积分说明 613169
版权声明 598336